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Abstract

Recent high-throughput methodologies such as microarrays and next-generation sequencing are well established /

routinely used in cancer research, generating large amounts of complex data at different omics layers. The effective
integration of omics data could provide a broader insight into the mechanisms of cancer biology, helping researchers
and clinicians to develop personalized therapies. Here we explore the use of Integrative Network Fusion, a bioin-
formatics framework combining a novel similarity network fusion method and machine learning for the integration
of multiple omics data. We apply the framework for the classification of neuroblastoma patients belonging to mul-
tiple disease stages integrating microarray, RNAseq and array comparative genomic hybridization data. We provide
detailed results for one case study, the integration of microarray and CNV data for the classification and prediction
of Event-Free Survival patients. Further, we discuss ongoing work on the dataset proposed for the CAMDA2017
neuroblastoma challenge.

1. Introduction

Neuroblastoma is a rare disease typically manifesting in early infancy with an estimated 700 new cases diagnosed
in the US each year [1]. It displays a very heterogeneous clinical course, with extreme cases presenting spontaneous
regression opposed by patients relapsing and eventually dying despite prompt therapy [2]. Because of this heterogene-
ity, the ability to accurately predict the most likely disease outcome at the time of diagnosis is of extreme importance,
especially given that accurate risk estimation allows delivering an appropriate targeted therapy [3]. Amplification of
the oncogene MYCN and age at diagnosis are currently the key clinical characteristics for the patient’s risk assess-
ment [4]. However these indicators only cover a portion of all neuroblastoma cases (ca. 22% of all neuroblastoma
tumors present MYCN amplification [2]). The introduction of genome wide assays able to probe in great detail mul-
tiple genomics aspects often at affordable prices brought the promise of novel biomarkers identification for clinical
outcome prediction, especially in combination with effective data analysis [5, 6]. Machine learning approaches have
been adopted for the predictive classification of patient outcome in neuroblastoma, also considering the integration
of data from multiple assays [5, 7]. For example, in a previous effort, the RNA Sequencing Quality Control (SEQC)
initiative extensively explored expression-based predictive models for neuroblastoma risk assessment [8]. However,
comprehensive integrative approaches effective across multiple clinical outcomes are still limited [5]. For this reason,
we set out to apply Integrative Network Fusion (INF), a novel integrative approach able to combine multiple data
types in a machine learning setting [9]. On the CAMDA2017 neuroblastoma challenge dataset (145 samples), INF
improves prediction on Event-Free Survival (EFS) when combining microarray and comparative genomic hybridiza-
tion array (aCGH) data with respect to both simple juxtaposition and use of independent datasets. Interestingly, the
approach identifies a subset of samples that is consistently misclassified. For the remaining endpoints and on the full
set of 498 samples, classification results are more heterogeneous, with classification performances displaying large
variation across endpoints, as previously observed [8].

∗Corresponding/presenting author
Email addresses: francescatto@fbk.eu (M. Francescatto), rezvan@fbk.eu (S. Rezvan Dezfooli), zandona@fbk.eu (A. Zandonà),

chierici@fbk.eu (M. Chierici), jurman@fbk.eu (G. Jurman), furlan@fbk.eu (C. Furlanello)

Preprint submitted to CAMDA 2017 May 23, 2017



Endpoint 498 cohort 145 cohort
TR TS TR TS

ALL-EFS 249 249 71 74ALL-OS
CLASS 136 136 42 45
HR-EFS 86 90 NA NAHR-OS

Table 1: Sample stratification (number of subjects). TR: training set; TS: test set; NA: not applicable (number of samples too low for accurate
classification).

2. Materials and methods

Samples. The datasets used in this study include RNA-Seq and Agilent microarray gene expression profiles
of 498 neuroblastoma patients [8], as well as matched aCGH data for a subset of 145 patients [10–13]. Clinical
characteristics of the 498 samples were described previously [8]. The following prognostic endpoints were considered
for classification tasks: the occurrence of an event (progression, relapse or death) (ALL-EFS); the occurrence of death
from disease (ALL-OS); patient gender (SEX); an extreme disease outcome (CLASS); the occurrence of an event
(HR-EFS) and death from disease (HR-OS) in high-risk (HR) patients only. HR status was defined according to
the NB2004 risk stratification criteria. Samples were split in training (TR) and test (TS) sets according to previous
partitioning [8]. Outcome stratification statistics are summarized in Table 1.

Data processing. Agilent microarrays (AG1) and RNA-Seq (MAV) were preprocessed elsewhere [8], obtaining
log2 normalized expressions for probes (AG1-P), genes (MAV-G), and transcripts (MAV-T). Here, AG1-P were further
summarized over genes (AG1-G) according to platform annotation, while aCGH microarray raw data (CNV) were
preprocessed by the rCGH R/Bioconductor package [14] using default parameters; segmentation tables were then
summarized over genes (CNV-G). All data tables were filtered for downstream analysis by removing features with
zero or near-zero variance using the nearZeroVar function in the caret R package with default parameters. To avoid
information leakage, feature filtering was performed on TR sets and applied on both TR and TS sets.

Feature sets. We considered multiple feature sets, namely: TOT, containing the filtered set of features for the
corresponding technology (e.g., AG1, MAV, CNV); DEC, a subset of features obtained performing limma [15] dif-
ferential expression analysis on MAV-G TR data between patients with favorable and unfavorable outcome (CLASS
endpoint); LIT, a set of 102 genes involved in neuroblastoma retrieved on 2017/05/11 from the literature aggregator
Cancer Genetics Web1.

Predictive classification. We adopted the Data Analysis Protocol (DAP) developed within the MAQC-II and
SEQC challenges [16, 17], the U.S. FDA initiatives for reproducibility in microarray and sequencing expression
experiments. Briefly, given a dataset split in TR and TS portions, the former undergoes a 10 × 5−fold stratified
Cross-Validation (CV) resulting in a ranked feature list and a classification performance measure, here the Matthews
Correlation Coefficient (MCC) [18, 19]. As classifier, we used linear SVMs (with L2L1 penalties) and Random Forest
(RF). At each CV iteration, features are ranked by RF Gini index or SVM weights and the classifier is trained on an
increasing number of ranked features. A list of top-ranked features is obtained by Borda aggregation of the ranked
CV lists [20]. The best model is later retrained on the whole TR set restricted to the features yielding the maximum
MCC in CV, and selected for validation on the TS set. As a sanity check to avoid unwanted selection bias effects, the
DAP is repeated stochastically scrambling the TR labels (Random Label scheme).

Integrative Network Fusion. INF is a bioinformatics framework for the identification of integrated multi-omics
biomarkers based on predictive profiling and a novel approach to their integration (Figure 1). In summary, first a RF
classifier is trained on the juxtaposed dataset (juxt), obtaining a feature list ranked by mean decrease in Gini impurity.
Secondly, the data sets are integrated by Similarity Network Fusion [21] and features are ranked by a novel ranking
scheme (rSNF) based on SNF-fused network clustering; a RF model is developed on the juxtaposed dataset with
the feature ranking defined by rSNF. From both approaches, a subset of top discriminant features can be identified,

1http://www.cancerindex.org/geneweb/X1701.htm
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Figure 1: Graphical representation of the INF workflow for two generic omics datasets (adapted from [9]). A first RF classifier is trained on the
juxtaposed data and the feature list obtained is ranked by mean decrease in Gini impurity (ML-juxt). The two data sets are then integrated by
Similarity Network Fusion, the features are ranked by rSNF and a RF model is developed on the juxtaposed dataset with the feature ranking so
defined (ML-rSNF). Finally, a RF classifier is trained on the juxtaposed dataset restricted to the intersection of juxt and rSNF top discriminant
feature lists. All the predictive models are developed within the DAP described in the methods.

according to the predictive performance of the classifier. Finally, a RF classifier is trained on the juxtaposed dataset
restricted to the intersection of juxt and rSNF feature lists (rSNFi). Predictive models are developed inside the DAP
described above. The code implementing INF is available as a GitHub repository2 (manuscript in preparation).

3. Results

We first applied RF and SVM classifiers to all the sets of data independently, using as labels the endpoints origi-
nally proposed in [8] and summarized in Table 1. In general, RF achieved better performance than SVM and predic-
tions based on RNA-Seq were better than those obtained with other techniques. The integration of AG1 with MAV
only slightly improved the performance on LIT and DEC feature subsets. Consistently with previous published re-
sults, we observed a poor MCC performance on HR endpoints. In contrast, the best results were obtained for the
CLASS label, identifying patients with extremely positive or negative disease outcomes. SEX label and random la-
bels were used as positive and negative controls respectively. Since only 145 samples were provided with matching
aCGH data, we performed similar preliminary analyses also on this subset obtaining comparable results, with CLASS
being the best performing endpoint but with generally lower performance likely due to the reduced number of samples
available. For this subset we did not consider the HR-OS and HR-EFS endpoints, as the number of samples is too low
to allow accurate prediction. Predictions based on CNV alone were generally poor (as shown for ALL-EFS endpoint
in the example proposed in Figure 2), while AG1 and MAV performed better and comparably between them. For
the integration approach we observed a heterogeneous behavior, with generally better performance on the combined
datasets. In particular, as previously found for a meta-omics application in [9], the advantage of INF over simple
juxtaposition is a more compact feature signature at similar MCC scores.

We present more details on one specific example, namely AG1-G plus CNV-G on the ALL-EFS endpoint, in
which the integration gives positive results in terms of both performance on the integrated datasets and compactness
of the feature sets retrieved (see Figure 2). All the panels of Figure 2 clearly show that predictions based purely on
CNV perform poorly. We observe that with INF we achieve better MCC on both CV and TS (Figure 2, panels a and

2https://github.com/AleZandona/INF
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Figure 2: Classification performance on ALL-EFS endpoints for the 145 samples subset. a. Internal (in CV) and external (on TS) performance. b.
TS performance stratified by feature set. c. TS predictions heatmap (rows =samples, columns=integration strategy, including unintegrated data;
orange: misclassified, grey: correctly predicted). Highlighted in blue are TS samples consistently misclassified.

b). INF identified 75 top features, as opposed to the 4640 identified by simple juxtaposition and the 2171 and 100 for
the single datasets (AG1-G and CNV-G, respectively). These include potentially interesting genes. For example, the
most important feature extracted by INF is STK31, a cell-cycle regulated protein previously implicated in colorectal
cancer and recently suggested as novel oncogene [22]. Interestingly, we observe that a set of 12/74 TS samples
are consistently misclassified, independent of integration strategy, assay, clinico-genetic subgroups and INSS staging
(Figure 2 panel c).

4. Discussion and future directions

We introduced here the INF framework and applied it to the neuroblastoma data made available for the CAMDA2017
challenge. We provide a general overview of the classification performances we obtained across multiple input sets,
feature sets and endpoints. We also present details for a case study in which integration allowed us to achieve better
performance and more compact feature sets. It is important to notice that our results are part of an ongoing effort
aiming at further improving both the technical aspects of the INF implementation and either the performance or the
biological insight on this dataset. In particular, our effort is focusing on the following aspects.

1. The CNV calls were shown to perform poorly as classifiers. We hypothesize that improved CNV calls on the
aCGH might turn them into a more informative resource. It is important to notice that despite the poor clas-
sification performance of CNV alone, their integration with microarray data provided improved classification
(Figure 2).

2. Given the promise shown by emerging deep learning approaches applied to biological data and previous suc-
cessful work from our group in this direction [23], we aim at developing an omics-integration framework based
on deep learning and applying it to these data.

3. A current limitation of the INF approach for wide feature data resides in the time consuming implementations
of the algorithm section performing spectral clustering. A code optimization is currently ongoing, but this
limitation currently makes it impossible for us to run INF on the TOT feature set, i.e., including all possible
features.

4. Further explore the integration of additional omics layers, such as epigenomics data.
5. Interestingly, we identified a set of 12 out of 74 TS samples that are consistently misclassified, independently

from integration strategy, assay, clinico-genetic subgroups and INSS staging. This opens the intriguing possi-
bility that these patients could represent a subgroup that may be characterized by distinctive biomarkers.
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