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Background 

Urban microbiomes differ from other known microbiomes in their comparatively high population            
dynamics, especially when considering areas with a high fluctuation of bypassing humans as             
subway/railway stations of public transport systems (~238 million trips/year in Boston, ~14            
million trips/year in Sacramento). The MetaSUB International Consortium (The MetaSUB          
International Consortium 2016) aims to improve quality of living, city utilization and planning             
through the detection, measurement and design of metagenomics studies within urban           
environments. Several cities have already published results of their urban microbiomes, like            
New York City and Boston (Afshinnekoo et al., 2015; Hsu et al., 2016), giving insights into the                 
bacterial and human diversity showing that bacteria found in their samples mainly represent             
harmless species, but also that a large part of the samples contains still unknown DNA. To                
detect novel species and to enable a detailed analysis of microbe-microbe communities or             
host-microbe interactions, metagenomic reads have to be assembled into ideally complete           
genomes. However, to our current knowledge, no other study tried to accomplish assemblies of              
urban microbiomes so far. Assembly quality and genome binning approaches are influenced by             
a wide range of factors. These Influences affect computational performance, detection of low             
abundant taxons and species,well as the purity of the bins from said assemblies to resolve               
bacterial genoms at strain-level. To help people dealing with a plethora of assembly tools, it is                
essential to provide clear assessment parameters and quality measures for assembly methods.            
In Sczyrba et al. (2017) different methods and strategies were compared to help in obtaining               
good and contamination-free bin sequences. They found that assembly tools perform very            
differently, depending on the features of the metagenome sample. These features include            
population diversity, sequencing quality, sequencing depth and input material. High community           
diversity, especially the presence of closely related microbial strains, can decrease assembly            
performance dramatically and is one of the main challenges in metagenomics analysis. 
 
 
 



Aim of the study 
● Create ​assemblies from typical urban metagenome datasets and assess the quality of            

these assemblies. 
● Create a ​mock community with ​typical features of an urban metagenome dataset​.            

Analyse the performance of assemblers using the created mock community and propose            
a set of ​recommendations in reference to ​sequencing parameters to increase           
assembly and binning quality​ of urban metagenome data. 

 
In this study, we have constructed multiple metagenome assemblies of Sacramento bench            
samples from five different stations (Samples 1-4A, 6A) by assembling single samples as well              
as established an assembly of all bench samples were pooled together. Pooling the samples              
should give us more power to analyse low abundant organisms in the dataset. We used these                
datasets to provide first results, and also plan to apply the approaches to all provided shotgun                
sequenced metagenome datasets in the CAMDA MetaSUB Inter-City Challenge.  
 

 
Figure 1​. Schematic overview of the approach used to analyse the five samples from the Sacramento                
Bench dataset using tools for establishing the Mock community and for assembling the metagenomes              
with various different tools. 
 
To further assess features of urban metagenomes that influence assembly performance, we            
created mock communities based on taxonomic profiles of the reads from the original samples.              
These mock communities are generated from the assigned taxa, representing the population            
diversity of urban metagenome samples. All included taxa are based on taxonomic profiles from              
Kraken and their respective reference genomes obtained from the NCBI Reference Sequence            
Database. Mock communities created from simulated reads with high sequencing quality,           
varying sequencing error rates, varying sequencing depths, varying levels of contamination, as            
well as varying levels of strain diversity are evaluated. These mock communities will be used to                



determine optimal sequencing parameters in order to ​provide recommendations for an optimal             
sequencing setup that would enable the creation of high-quality bins out of the assemblies. 
 
  
Preliminary Results 
 
All Sacramento grey metal bench samples (Samples 1-4A, 6A) were subjected to taxonomic             
analysis using Kraken (Wood et al., 2014) and MetaPhlAn2 (Truong et al., 2015), which use               
either a k-mer or marker gene-based approach. Kraken and MetaPhlAn2 were chosen due to              
good performance in Lindgreen et al. (2016) and Sczyrba et al. (2017). While Kraken could               
classify 8,176,806 of 156 million quality controlled reads for the Pool of all Sacramento bench               
samples, MetaPhlAn2 could only classify 138,758 reads due to it’s different approach using             
marker genes. Single samples showed 91-97% unclassified reads using Kraken which indicates            
at either sequencing artefacts or yet unknown species, both possibilities need to be assessed              
later on. Relative abundances did not agree fully between both taxonomic methods, with Kraken              
classifying 52% of all reads as Proteobacteria and 38% as Actinobacteria and MetaPhlAn2             
classifying 39 % and 36% as Proteo- and Actinobacteria respectively. Phylums with lower             
abundances showed even more pronounced differences as Kraken identified 1% Bacteroidetes,           
2 % Firmicutes and 3% Cyanobacteria in all reads classified as Bacteria, while MetaPhlAn2              
classified 12%, 5% and 1% respectively, showing relative abundances need to be interpreted             
with caution, as different classification methods can give varying results. Taxonomic profiles of             
single samples showed a similar pattern. 
Unknown species can only be identified by assembling the metagenomic data followed by             
binning of the resulting contigs. To this end all samples were preprocessed by Trimmomatic              
(Bolger et al., 2014) and assembled by MEGAHIT (​Li et al. 2016​). MEGAHIT performed              
favourably in Sczyrba et al. (2017) as well as in Vollmers et al. (2017). To assess the impact of                   
species diversity without the impact of potential sequencing artefacts, mock communities based            
on taxonomic profiles of Kraken were created with varying complexity and sequencing depth.             
Mock community assemblies shown are constituted of all species and their respective            
subspecies with at least 20,000 reads assigned to species level as well as the presence of a                 
reference genome for the same taxonomic ID in the NCBI Reference Genome Database             
resulting in 227 genomes selected. Mock communities were created with 10 and 20 million 125               
bp long high quality read pairs sampled from the selected reference genomes and assembled in               
the same manner as the original samples. 
 
Resulting contigs were binned with three different binning programs, namely MetaBAT (Kang et             
al., 2015), MaxBin (Wu et. al., 2016) and CONCOCT (Alneberg et. al., 2014) due to good                
performance in Sczyrba et al. (2017), which apply nucleotide composition and abundances to             
place contigs into genome bins. These bins were also checked for contamination and             
completeness using single copy genes as provided in CheckM (Parks et al., 2015).  
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Sample Assembly 
size 

Contigs Avg contig 
size 

Max contig N50 Reads 
mapping 

Sample 1A 101,759,459  113,596  896  49,364 829 17.41% 

Sample 2A 71,245,988  91,093  782  46,571  717  24.30%  

Sample 3A 58,878,533  78,491  750  100,608  688  18.82%  

Sample 4A 87,916,835  118,212  744  48,282  689  27.14%  

Sample 6A 71,600,288  94,868  755  46,394  698  21.58%  

Pool 
12346A 

563,529,486  721,126  781  100,559  728  30.82%  

Mock 10m 297,100,595 255,456 1163 1,206,229 1216 78,85% 

Mock 20m 472,069,039 253,055 1865 1,206,235 2780 93.13% 

Table 1​. Assemblies statistics of Sacramento grey metal bench samples 1-4A and 6A as well as an                 
assembly of all respective samples together. Mock communities are created as described above,             
10m/20m standing for 10/20 million 125 bp long read pairs. 
 
Samples 1-4A and 6A consist of 20-25 million read pairs, of which 5% could be classified as                 
bacterial. Sequencing depth has a major effect on assembly performance. This can be seen by               
the number of input reads mapping back to the assembly. The alignment rate is highest for the                 
pooled real data sample as well as in the two mock communities, which consist of the respective                 
RefSeq genomes and relative abundances thereof. A two-fold increase in sequencing depth            
already raises the amount of input reads mapping back to the assembly tremendously. 
 

Sample Bin Binner Completeness Contamination Strain 
heterogeneity 

Reads 
mapping 

Pool 12346A Bin 18 MaxBin 92.26% 7.57% 13.64 0.27% 

Pool 12346A Bin 54 CONCOCT 92.1% 9.69% 69.23 0.08% 

Pool 12346A Bin 32 MaxBin 90.88% 9.66% 68 0.08% 

Pool 12346A Bin 13 CONCOCT 90.52% 5.05% 50 0.09% 

Mock 20m Bin 8 MetaBAT 99.89 0.59 0 5.41% 

Mock 20m Bin 2 MaxBin 99.89 0.65 0 5.52% 

Mock 20m Bin 10 MaxBin 99.78 0.33 0 3.04% 

Mock 20m Bin 25 MaxBin 98.11 10.98 5.88 0.83% 

Table 2. Top bins with high coverage of assembled input reads, estimated completeness above 90 % and                 
less than 15% contamination as estimated by CheckM. Input reads are mapped to single bins. 



Binning the assembly of the pooled samples resulted in 21, 58 and 113 bins for MetaBAT,                
MaxBin and CONCOCT respectively, for which 3.96%, 15,00% and 15.44% of all input reads              
could be mapped to all bins of the respective methods. The same binning for the Mock                
community with 20 million reads resulted in 27, 92 and 68 bins for MetaBAT, MaxBin and                
CONCOCT respectively, of which 67.65%, 78.95% and 84.92% of all input reads could be              
mapped to their respective bins. This demonstrates the possibility to retrieve high quality bins              
with very low contamination as shown in Table 2 for selected single bins of a community as                 
provided in the selected samples. 
To enhance the presented analysis, various types of contamination and their impact will be              
assessed to propose recommendations in reference to sequencing parameters. This should           
lead to increased assembly and binning qualities in urban metagenome data. Additionally, bins             
obtained from the real data samples will be further analysed and refined by reassessing and               
reassembling high quality bins as well as analysing their functional potential and putative             
virulence factors. Sequences which could not be classified by taxonomic profilers but grouped             
together in bins are likely representing unknown species and are thereby an interesting target              
for further research, whereas contigs which are neither able to be classified nor binned might               
represent sequencing artifacts. Human contamination was tested, but only about 1,5% of the             
reads were found to map against the hg38 human reference genome. 
 
References 

Afshinnekoo, E.,et al. (2015). Geospatial Resolution of Human and Bacterial Diversity with City-Scale 
Metagenomics. ​Cell Systems​, ​1​(1), 72–87. 

Alneberg, J.,et al. (2014). Binning metagenomic contigs by coverage and composition. ​Nat Methods​, (11), 
1144-1146. 

Bolger, A. M.,et al. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data.​ Bioinformatics, 
30​(15), 2114–2120.   

Hsu, T., et al. (2016). Urban Transit System Microbial Communities Differ by Surface Type and 
Interaction with Humans and the Environment. ​mSystems​, ​1​(3), 1–18. 

Kang, D. D., et al. (2015). MetaBAT, an efficient tool for accurately reconstructing single genomes from 
complex microbial communities. ​PeerJ​, (3), e1165 

Li, D. et al., 2016. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced 
methodologies and community practices. ​Methods ​, 102, pp.3–11. 

Mende, D. R., et al. (2012). Assessment of metagenomic assembly using simulated next generation 
sequencing data. ​PLoS ONE​, ​7​(2). 

Parks, D.,H., et al. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, 
single cells, and metagenomes. ​Genome Research​, 25: 1043–1055. 

Sczyrba, A., et al. (2017). Critical Assessment of Metagenome Interpretation – a comprehensive 
benchmark of computational metagenomics software. ​bioRxiv​. 

The MetaSUB International Consortium. (2016). The Metagenomics and Metadesign of the Subways and 
Urban Biomes. ​Microbiome​, 24(4): 1–14.  

Truong, D. T., et al. (2015). MetaPhlAn2 for enhanced metagenomic taxonomic profiling. ​Nature Methods​, 
12​(10), 902–903.  

Wood, D. E., et al. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. 
Genome Biology​, ​15​(3), R46. 

Wu, Y. W., et al. (2016). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple 
metagenomic datasets. ​Bioinformatics​, (32), 605-607. 


