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Abstract

Neuroblastoma (NB) is the most common extracranial solid tumor in children. NB in about 50% of pediatric pa-
tients will metastasize and result in a poor outcome. In order to provide better prognosis and facilitate individualized
precise treatment, here we developed a novel workflow, which integrates clinical information and molecular features such
as gene expression for prognosis. First, we mined co-expressed gene modules from microarray and RNA-seq data us-
ing the weighted network mining algorithm lmQCM; secondly, we build weight matrix with module eigengenes and a
consensus clustering method called Molecular Regularized Consensus Patient Stratification (MRCPS), which aggregates
both essential clinical information and multiple eigengene data for patient stratification. Our method improves prognosis
significantly by regularizing clinical partition of patients using the additional weight matrix information. Our results
suggested this method has a superior performance for predicting survival than only use genetic data and clinical diagnose
result. Simultaneously, a subgroup of patients with extremely poor survival in early months was identified.
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1 Introduction

Neuroblastoma (NB) is one of the most common cancers in
children. About 50% of pediatric patients with NB will suf-
fer metastasis and have a poor outcome. Accurate progno-
sis of patients will help to establish a individualized precise
treatment plan for the patients, and lead to an improved
long-term survival rates. Currently, clinical stage and risk
at diagnosis are strong prognostic factors for NB[1]. How-
ever, with the accumulation of genomic and pathological
data, an ideal approaches to address improve the predic-
tion accuracy is to integrate genetic mutations, gene ex-
pression profiles, tissue and organ morphological features
as well as clinical phenotypes to make a holistic decision.
To achieve this goal, new methods for data integration are
needed. Specifically, consensus clustering method, which
integrate multiple clustering results from different types of
data to achieve a single clustering of the data, has been in-
troduced for this purpose. Currently there are two major
approaches to achieve the consensus learning goal: 1) Prob-
abilistic approach, which adopts a maximum likelihood for-
mulation to generate the consensus clustering results using
the Dirichlet mixture model given the distributions of base
labels[2]; and 2) Similarity approach, which directly finds
consensus clusters that agree the most with the input base
clusters[3]. However, most of the consensus learning algo-
rithms cannot be directly applied to multi-modal data with
mixed data types (e.g., numerical data of transcriptomic
levels of genes and categorical data for clinical stages of the
patients). This limits the clinical applications of consensus
learning algorithms. In this work, we present an effective

integration workflow for numeric transcriptomic data and
categorical clinical information. Our goal is to find a con-
sensus partition of patients from transcriptomic data and
clinical attributes in order to reveal clinically and biologi-
cally relevant partition of the patient cohort. In this project,
we apply a consensus clustering algorithm called Molecu-
lar Regularized Consensus Patient Stratification (MRCPS)
that previously have been successfully used for predicting
outcomes for triple negative breast cancers.

In this work, we integrate MRCPS with gene co-
expression network mining to identify combinations of co-
expressed gene modules with clinical information that can
predict NB patient outcomes, especially the ones that were
previously considered ”high-risks”. The integrated workflow
is shown in Fig 1. Since both RNA-seq and gene expression
microarray data are available for these NB patients, we take
advantage of both types of transcriptomics data.

The sheer large number of features (genes, probesets, etc)
in the transcriptomic data poses a challenge on the down-
stream data integration as well as the statistical power for
detecting representative gene expression features. To reduce
the data dimensionality and improve statistical power of de-
tection, we first identified densely connected co-expression
modules in microarray and RNA-seq data. We used lmQCM
(local maximum Quasi-Clique Merger) algorithm to mine
co-expressed gene modules and summarized each module
into a “eigengene” using the protocol described in [4]. This
approach not only substantially improves statistical power,
but also greatly reduces the data dimensionality and distills
the molecular features of the important biological processes,
functions or genetic variants, which facilitates the down-
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stream integration with other data types and the interpre-
tation of the results. Next in the workflow, we combined
the module eigengenes and clinical data together, and ap-
plied a computational method to regularize the clinical clas-
sification using molecular weight matrix as prescribed by
the affinity of sample in the molecular features space that
was defined according to molecular subtypes and estimate
density-based models. In the cases that the initial clustering
led to a stratification of the patients without significant dif-
ference in survival times (i.e., log-rank test p value less than
0.05), we switch to patient similarity matrix based graph
method to integrate with clinical information. In this pa-
per, we incorporated these two methods to obtain weighted
patient similarity matrix from transcriptomic data and in-
tegrate it with categorical clinical attributes from the same
patient cohort and pursued a consensus clustering of the
cohort.

Figure 1: Integration of molecular features with clinically-
defined patient stratification workflow

2 Methods

2.1 Dataset and preprocessing

Transcriptome datasets are obtained from Neuroblastoma
Data Integration Challenge of CAMDA 2017 for 498 pe-
diatric patients with known clinical endpoints. The data
including RNA-seq for 60,788 transcripts and Agilent mi-
croarray data for 45,198 probesets. We identified 9,583 genes
whose profiles are present in both RNAseq and mircoarray
datasets with matched gene symbols for further analysis and
data integration.

2.2 Gene co-expression analysis and sum-
marization

We applied our recently developed weighted network mining
algorithm lmQCM[4] for gene co-expression module mining.
Unlike the popular algorithm WGCNA that utilizes hierar-
chical clustering therefore does not allow overlaps between
clusters, our algorithm takes a greedy mining approach, al-
lowing genes to be shared among multiple gene modules,
agreeing with the fact genes often participate in multiple bi-
ological processes. In addition, we have shown that lmQCM
can find smaller co-expressed gene clusters that are often
associated structural mutations such as copy number varia-
tions in cancers. The lmQCM algorithm uses four parame-
ters, namely γ,α, t, andβ. Among these parameters, γis the
most influential as it decides if a new module can be initi-
ated by setting the weight threshold for the first edge of the
module as a subnetwork. In our analysis, we transformed
the absolute values of the Spearman correlation coefficients
between expression profiles of all pairs of genes as weights
using a weight-normalization procedure adopted from spec-
tral clustering [4]. β specifies the threshold for overlap ratio
between two modules. If the overlap ratio between two mod-
ules (defined as the ratio between the size of overlap and the
size of the smaller module) is larger than beta, the two mod-
ules will be merged into a larger one. In practice, we found
with γ=0.80, t = 1, α = 1, and β = 0.4 yielded gene modules
with reasonable sizes (less than 500 genes). Specifically, it
identified 38 co-expressed gene clusters of mircoarray and
24 co-expressed gene clusters of RNA.

2.3 Molecular Regularized Consensus Pa-
tient Stratification

We previously developed a mathematical formulation for in-
tegrative clustering of multiple-modal data. Specifically, we
introduced a consensus clustering method MRCPS based on
an optimization process with regularization [5]. We built two
kinds of MRCPS using molecular density weight matrix and
the molecular similarity weight matrix respectively, to en-
sure the effectiveness of our consensus cluster method. We
adopted the maximum mutual information to statistically
evaluate the patient cluster number k[5]. This workflow is
flexible. we can change the patient similarity matrix based
on the molecular data according to the data distribution.

2.3.1 Patient Similarity Matrix based on Molecular
Data

Cluster density function[6]: Based on the molecular features,
a clustering algorithm such as K-means can be applied thus
each patient i is clustered in its molecular subgroup. Then,
we can define a cluster density function f of this sample. A
classic choice of the density function is the Gaussian Kernel
density function[7]: where Kh is a Gaussian Kernel function
with parameter h and Ni is the number of patients in the
same cluster with features xi ∈ ℜp.

f(i)= 1
hpNi

∑Ni

j=1 Kh(xi − xj)

= 1

Ni(2πh2)
p
2

∑Ni

j=1 exp
(
−∥xi−xj∥

2h2

)
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For patients i and j, we have defined density estimators
f(i) and f(j) respectively as the density of clusters they
belong to. This density function denotes the ‘‘molecular
affinity’’ of the cluster sample which contains i. We can
assign weight W (i, j) = f(i) × f(j),if i ̸= j and i, j are in
the same cluster while W (i, j) = 0,if i ̸= j and i, j in the
different cluster. Finally, W (i, j) = 1,if i = j.

2.3.2 Patient Similarity Matrix Using Similarity
Network Fusion

In the cases that the initial clustering using the above ma-
trix led to a stratification of the patients without significant
difference in survival times (i.e., log-rank test p value leq
0.05), we can define the weight matrix using a nonlinear
method based on message-passing theory. This method has
been previously adopted in Similarity Net Fusion [8] to inte-
grate data from multiple sources. Specifically, for a patient
similarity network, edge weights are represented by an n×n
similarity matrix W with W (i, j) indicating The similarity
between patients i and j. W (i, j) is generated by apply-
ing a scaled exponential similarity kernel on the Euclidean
distance d(xi,xj) between the patient features xi and xj [8]:

W (i, j) = exp

(
−d2(xi, xj)

µεi,j

)
,

where µ is an empirical hyperarameter set at 0.3 and εi,j is
defined as

εi,j =
mean(d(xi, Ni) +mean(d(xj , Nj) + d(xi, xj)

3
.

Through the above method we obtain the molecular weight
matrices for microarray and RNA-seq datasets respectively.
Then they are merged using the message-passing method
mentioned above.

2.4 Categorical distance metric
In order to use the distance matrix from transcriptomic
data to refine the patient clusters defined by the clinical
attributes, we first need to define a distance metric for the
clinical similarity between a pair of samples. The categorical
distance metric between two clinical clusters Cl,Ck is

dist(Cl, Ck) =
∑
i<j

[
Sl
ij − Sk

ij

]2
,

where Sl
ij=1 if the patient samples i and j are in the same

cluster, and otherwise is 0.
Next, we take the weight matrix generated from the

molecular data to adjust the clinical clusters. We weighed
each pair of genes’ similarity Si,j with the fused Molecular
Weight Matrix W for every i and j. The underlying ratio-
nale is that, if two patient samples i and j are in a cluster
of poor molecular clustering result, similarity between them
should be low. Thus, a lower weight is given to leverage the
high clinical similarity Si,j . Given a set of L as the clinical
partitions, we can optimize the following cost function to
find the optimal partition of patients:
S⋆= 1

L argminS⋆

∑L
i=1

∑
i<j wi,j

[
slij − s⋆ij

]2

3 Results
3.1 Predicting prognosis for the entire pa-

tient cohort
To evaluate the prognostic performance of our method, we
compared our results (ie, Kaplan-Meier curves and log-rank
test between survival times of patients in different clusters)
with clinical features (ie, clinical stage or risk level) alone
(Figure 3(a) and 3(b)). Specifically, we tested integration
of the two types of transcriptomics data with clinical stage,
risk level, as well as both clinical stage and risk level using
two approaches. The first is to use the original MRCPS algo-
rithm to calculate the patient similarity matrix as described
in Section 2.3.1 (Figure 4). The second approach is to use
the message passing approach as described in Section 2.3.2
(Figure 5). In addition, for each approach, we also com-
pared the results with those obtained using transcriptomics
data alone. But since the MRCPS algorithm was designed
to integrate both transcriptomics and clinical data, we used
the similarity network fusion algorithm for transcriptomics
data (Figures 4(a) and 5(a)).
As shown in Figure 3, the clinical factors such as stage and
risk level can effectively stratify patients into groups with
significantly different survival times. Specifically, when the
factor divides patients into low-risk and high-risk groups
while the pathology information separates patients into five
stages (1,2,3,4s,4). The results are shown in Fig.3(a) and
Fig.3(b) (log-rank p = 9.21e− 30 and log-rank p = 3.88e−
37). Clinical risk are better than clinical stage in prognosis,
as all of the low risk patients survived.

The prognostic prediction results of using transcriptomic
data alone are shown in Figures 4(a) and 5(a). While the
patients are well separately, the prediction is inferior than
using clinical factors, suggesting that integration clinical fac-
tors may improve the prediction. And the integrative anal-
ysis results confirmed this notion as shown in the rest of the
figures. Both molecular weight matrices of MRCPS gener-
ate better prognosis than clinical prognosis and independent
molecular cluster, as shown in Figure 4(c) and Figure 5(d),
as the survival curves show log-rank p-values of 1.16e-38 and
2.08e-38, respectively. As clustering results show, MRCPS
makes full use of clinical information, and has superior ca-
pability to separate patient populations with different out-
comes. Specifically, MRCPS using both molecular weight
matrix identified a subtype that has significantly poorer sur-
vival rate of less than 40%.

One observation is that the predictions shown in Figures
4(c) and 5(d) are even better than using the risk levels. Since
all patients in the low-risk group survived, this observation
suggest that the transcriptomic data may also improve of
the prediction for high-risk patients alone and we next focus
on the high-risk group.
Predicting prognosis for high-risk patients
After applying MRCPS to NB data, we discovered that
with both Molecular weight matrix the high risk patients
assigned to different subgroups and a higher risk subgroup
can be identified. We want to know if the clustering re-
sults by using our method is better than using disease stage
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in high risk patients. So we applied our method for high
risk patients. These results, together with the induced clin-
ical partitions obtained by disease stage are shown in Fig-
ure 6(c). Although clinical features separated patients of
low risk very well, it does not further stratify the high risk
group enough. MRCPS clustered high risk patients into sub-
groups, as shown in Figure 6(b) and 6(d). The clustering
result of using molecular similarity weight matrix is worse
than using the clinical stage, for molecular similar weight
matrix using spectral clustering, we found that k=2 is the
best cluster result according to maximum mutual informa-
tion, the result is shown in Figure 6(a), it is difficult to
reconcile with the five clinical stages. The result of molecu-
lar density weight matrix of MRCPS showed better results
of, retaining clinical stage and a more accurate classification
according to log-rank test. In particular, patients of stage
IV in clinical were divided into two groups, where the 84%
patients was in the group 4 and group 5 of the new cluster-
ing result. Group 5 has a worst prognosis, with the survival
rate reduced to less than 40% in first 50 months.The -log(p-
value) of These result -log(p-value) shown in Fig.2

(a) 498 NB patients

(b) 239 NB patients in High risk group

Figure 2: Compare -log(p-value) of predict the survival out-
comes between multiple method in all NB patients and high
risk patients

4 Discussion and Conclusion
In this paper, we developed a workflow to integrate the tran-
scriptomic data and clinical data of NB patients. While the
currently used clinical factors can predict patient outcome
well, our results showed that our workflow has a superior
performance for the entire cohort when both types of tran-

scriptomic data are integrated.
In addition, we found that the previously identified ”high-
risk” group of patients can be further stratified into mul-
tiple groups with significantly different prognosis. While a
subgroup of patients with extremely poor survival in early
months was identified, a group of high-risk patients actually
demonstrated good prognosis (Figure 6(d)).
In the meanwhile, we applied and tested two kinds of molec-
ular affinity matrix, and the proposed MRCPS of molecular
density weight matrix method can better stratify patients
into repeatable and clinically relevant subtypes as demon-
strated by the results. This method can be also extended to
the integration of other kinds of genomic features like copy
number, somatic mutations, SNP, and pathological infor-
mation as well as for other cancer types.
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(a) Clinical stage (b) Clinical risk

Figure 3: Clinical diagnose information predict the survival outcomes

(a) Molecular density weight ma-
trix with kmean cluster

(b) Integrate with clinical stage (c) Integrate with clinical risk (d) Integrate with clinical stage
and risk

Figure 4: MRCPS of Molecular density weight matrix predict the survival outcomes

(a) Similarity network fusion (b) Integrate with clinical stage (c) Integrate with clinical risk (d) Integrate with clinical stage
and risk

Figure 5: MRCPS of Molecular similar weight matrix predict the survival outcomes

(a) Similarity network fusion (b) Clinical stage (c) MRCPS of Molecular similar
weight matrix

(d) MRCPS of Molecular density
weight matrix

Figure 6: Compare predict the survival outcomes between multiple method in high risk patients
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