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Abstract 

Despite the progress in neuroblastoma therapies the mortality of high-risk patients is 

still high (40% - 50%) and the molecular basis of the disease remains poorly known. 

Here we use models of cell signalling, a key process in this cancer, to understand the 

molecular determinants of bad prognostic. We also show how the activity of signalling 

circuits can be used as a predictor of survival in neuroblastoma patients. 

Introduction 

Neuroblastoma is a tumour derived from primitive cells of the sympathetic nervous 

system that, despite advances in its treatment still has a poor survival for high-risk 

patients (Brodeur, 2003).  Risk groups are defined according to disease stage, patient 

age, and MYCN amplification status (Øra and Eggert, 2011). Although the use of 

biomarkers has demonstrated a clear clinical utility, they represent statistical 

associations to clinical parameters and frequently lack any mechanistic relationship 

with the molecular mechanisms responsible for tumorigenesis or therapeutic 

response.  On the contrary, signalling pathways play a key role in these processes. 

Actually, it has recently been demonstrated in neuroblastoma (Fey, et al., 2015) and 

other cancers (Hidalgo, et al., 2017) that the activity of specific circuits of signalling 

pathways was more correlated to patient survival that any of their constituent genes.  

Here, we have used models that produce a realistic estimation of signalling circuit 

activity within pathways from gene expression (Hidalgo, et al., 2017) to discover the 

molecular mechanisms behind the differences between the patients with MYCN 

amplification and the others as well as the determinants of survival in neuroblastoma. 



Results 

Data were downloaded and processed as indicated in Methods. Overall, our results 

document extensive differences at the level of signalling activity between patients with 

MYCN amplification and those lacking this biomarker.  Specifically, the MAPK and NFKβ 

pathways present a dramatic reduction of activity in patients with MYCN amplification.  

Some relevant functions significantly deactivated in high-risk patients are, for example, 

cellular response to DNA damage stimulus (see Figure 1), negative regulation of cell 

division or cell cycle arrest. 

 
Figure 1. Circuit MAPK signalling pathway: ATF2 that triggers cellular response to DNA damage stimulus 
is significantly downregulated (FDR-adjusted p-value=1.45x10

-15
 

 

Across different pathways high-risk patients present a systematic deactivation of 

cellular functions related to DNA repair and immune response.  

  
Figure 2. Kaplan-Meyer plots of survival of patients with MYCN amplification which have downregulated 
Adipocytokine: PTPN11 (left) and cAMP: AFDN (right) signalling circuits 

 

Regarding survival across all the patients, processes such as negative regulation of 

apoptosis process, triggered by multiple signalling circuits: p53: CDK1 CCNB3 (FDR-



adjusted p-value=7.6x10-11) PI3K-Akt: BCL2L1* (adj. p-val.=5.1x10-7) Jak-STAT: RAF1 

(adj. p-val.=5.4x10-3) Fc epsilon RI: MAPK8 (adj. p-val.=5.5x10-3), is associated to bad 

prognostic. Similarly, negative regulation of cell cycle arrest (triggered by p53: MDM2*,  

adj. p-val. <10-20) and  positive regulation of cell growth (Sphingolipid:TP53 BCL2, adj. 

p-val.= 1.5x10-12) seem to play an important role in low survival.  

We also tried to find the molecular drivers of bad prognostic among patients with 

MYCN amplifications.  Only two circuits, Adipocytokine: PTPN11 and cAMP: AFDN are 

clearly associated to bad prognostic. One of the effector proteins, PTPN11 has been 

implicated in mitogenic activation, metabolic control, transcription regulation, and cell 

migration (Chan, et al., 2008). The other effector protein, AFDN, is the fusion partner 

of acute lymphoblastic leukemia (ALL-1) gen involved in acute myeloid leukemias with 

t(6;11)(q27;q23) translocation, with a known role in cell adhesion (Mandai, et al., 

2013).  

Conclusions 

The use of models that quantify cell behavioural outcomes provides a unique 

opportunity to understand the molecular mechanisms of cancer development and 

progression as well as open the possibility to highly specific, individualized therapeutic 

interventions.  

Methods 

Data Source and data preprocessing 

The matrix GSE49711_SEQC_NB_TUC_G_log2.txt, with gene expression levels 

estimated by Cufflinks (Trapnell, et al., 2012) and quantified as log2(1+FPKM), was 

downloaded from the GEO database. Batch effect was corrected with COMBAT 

(Johnson, et al., 2007). Finally, the values were normalized between 0 and 1.  

Signalling circuit activity model 

Circuit activities are modelled from gene expression values as described in (Hidalgo, et 

al., 2017). Briefly, KEGG pathways (Kanehisa, et al., 2014) are used to define circuits 

connecting receptor proteins to effector proteins. A total of 98 KEGG pathways 

involving a total of 3057 gene products that compose 4726 nodes were used to define 

a total of 1287 signalling circuits. Normalized gene expression values are used as 

proxies of protein activity (Efroni, et al., 2007; Montaner, et al., 2009; Sebastian-Leon, 

et al., 2014). The signal transmission is estimated by starting with an initial signal of 1, 

which is propagated along the nodes of the signalling circuits according to the 

following recursive rule: 

 



𝑆𝑛 = 𝜐𝑛 ∙ (1 − ∏(1 − 𝑠𝑎)

𝑠𝑎∈𝐴

) ⋅∏(1 − 𝑠𝑖)

𝑠𝑖∈𝐼

 (1) 

 

Where Sn is the signal intensity for the current node n, vn is its normalized gene 

expression value, A is the total number of activation signals (sa), arriving to the current 

node from activation edges, I is the total number of inhibitory signals (si) arriving to the 

node from inhibition edges (Hidalgo, et al., 2016). In addition to circuit activities, the 

signal received by specific cell functions -according to either Gene Ontology 

(Ashburner, et al., 2000) or Uniprot (UniProt_Consortium, 2015) definitions-, triggered 

by more than one circuit, can also be estimated.  

Survival analysis 

Kaplan-Meier (K-M) curves (Kaplan and Meier, 1958) are used to relate module activity 

to patient survival in the different cancers. The value of the activity estimated for each 

module in each individual was used to assess its relationship with individual patient 

survival. Calculations were carried out using the function survdiff from the survival R 

package (https://cran.r-project.org/web/packages/survival/). 
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