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Neuroblastoma is a heterogeneous disease with diverse clinical outcomes.
Recently collected genome-wide datasets provide opportunities to infer
neuroblastoma subtypes more accurately than existing classification of
risk groups. To this end, we used machine learning techniques to pre-
dict overall survival and event-free survival profiles of patients. Using
the model that we trained on SEQC cohort, we can predict patient sur-
vival in an independent cohort with high accuracy (AUROC: 0.96) indi-
cating the applicability of the model to different datasets. Additionally,
we used unsupervised learning techniques that can effectively integrate
multiple high-dimensional datasets to identify subgroups of patients with
distinct survival profiles after stratification based on MYCN expression.
These subgroups can improve treatment stratification of neuroblastoma
patients.

Introduction
Neuroblastoma is the second most common solid tumor in childhood. The disease can
have a large variety of clinical outcomes ranging from spontaneous regression to relent-
less progression despite extensive therapies. Chromosomal amplification of the MYCN
locus occurs in 25 of all neuroblastomas and is associated with poor prognosis (1). Apart
from MYCN amplification, a limited set of additional variables such as age at diagnosis,
stage of disease etc. are used to stratify patients into distinct risk groups. Recent progress
on high-throughput technologies enables the collection of genome-wide measurements
across large set of patients in cohorts. We utilized the diverse data types provided by
the SEQC cohort (i.e., neuroblastoma challenge in CAMDA 2017) to develop statistical
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models that can predict clinical outcomes in neuroblastoma. Also, we employed an un-
supervised learning strategy to identify subgroups that have significantly diverse survival
profiles.

Results

Validation of the SEQC model on an independent cohort
We first performed supervised learning using support vector machines (SVM) within the
SEQC dataset. The mean cross-validation accuracy of this model is close to the best
accuracy reported for the same dataset (2). We then used our model trained on SEQC data
to predict overall survival (i.e., occurrence of death from disease) and event-free survival
(i.e., occurrence of progression, relapse or death) profiles of patients in an independent
cohort that is called Versteeg dataset hereafter. This dataset includes the gene-
expression measurements and clinical data for 88 patients. Figure 1a and 1b shows the
ROC curve for predicting overall survival and event-free survival profiles, respectively.

Figure 1: a) ROC curve for predicting overall survival profiles of patients in Versteeg
dataset. b) ROC curve for predicting event-free survival profiles of patients in Versteeg
dataset.

Clustering patients into subgroups with multi-view kernel k-means
MYCN expression is one of the best predictors of survival in neuroblastoma. However,
there is still some variability in survival profiles after stratification based on MYCN ex-
pression. We aimed to explain this remaining variability with RNA-seq data. As such,
we further clustered the patients that have low and high MYCN expression (N= 90 and
N=408 respectively). The threshold to split the patients based on MYCN expression was
chosen to minimize the log-rank test p-value from Kaplan-Meier analysis. As expected,
there is a high overlap between the patients with high MYCN expression and patients with
MYCN amplification. We used multi-view kernel k-means (MKKM) to integrate two ver-
sions of the same RNA-seq dataset that are processed in different ways (See Methods).
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The number of clusters was selected as 2 based on mean silhouette score. The weights of
the views for the two versions of the RNA-seq data were 0.43 and 0.57 (i.e., MAV and
RPM processing of RNA-seq data) for patients with low MYCN expression. Similarly,
the view weights were 0.46 and 0.54 when clustering the patients with high MYCN ex-
pression. These weights give better silhouette scores over uniform weights indicating the
advantage of using multi-view kernel k-means. Also, we used all the available features
rather than going through an initial feature selection procedure.

Figure 2a and 2b plot the survival curves of identified clusters from patients with low
and high MYCN expression, respectively. Log-rank test gives p-values of 0.06 and 0,
respectively. We also tried including the microarray data in addition to RNA-seq datasets;
however this did not improve the silhouette score and the log-rank test p-value. We re-

Figure 2: a) Survival curves of MKKM-inferred subgroups identified within the pa-
tients with high MYCN expression. Log-rank test p-value is 0.06. b) Survival curves
of MKKM-inferred subgroups identified within the patients with low MYCN expression.
Log-rank test p-value is 0.

peated the same analysis with the subset of the patients (145 patients) for which aCGH
data is available. We again split the patients into two groups based on MYCN expression.
Because the group of patients with high MYCN expression is small (N=24), we only clus-
ter the patients with low MYCN expression (N = 121). Figure 3 shows the survival curves
of identified clusters for patients with low MYCN expression. The difference between
Figure3a and 3b is due to the inclusion of aCGH data. Namely, including aCGH data in
addition to RNA-seq datasets results in a lower p-value (0.07 vs 0.0008).

Methods

Datasets
We downloaded the RNA-seq, microarray and aCGH datasets for the SEQC cohort from
CAMDA website. We used two versions of the RNA-seq data: SEQC NB MAV G log2.txt
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Figure 3: a) Survival curves of MKKM-inferred subgroups identified within the patients
with low MYCN expression. RNA-seq and aCGH dataseta are combined. Log-rank test
p-value is 0.0008. View weights are 0.45 (MAV) and 0.55 (RPM). b) Survival curves
of MKKM-inferred subgroups identified within the patients with low MYCN expression.
Only RNA-seq datasets are used. Log-rank test p-value is 0.07. View weights are 0.28
(MAV), 0.34 (RPM) and 0.37 (aCGH).

downloaded from CAMDA website and GSE62564 SEQC NB RNASeq log2RPM.txt
downloaded from GEO website for entry GSE62564. We downloaded the Versteeg dataset
from R2 database (http:// r2.amc.nl). The GEO accession number for Versteeg microarray
data is GSE16476 (3). We used the survival package in R to perform the Kaplan-Meier
analysis (4).

Machine Learning Methods
We used the SVC function available in Python’s scikit-learn library for prediction on
Versteeg dataset. Linear and RNF kernels were used to train the OS and EFS
models respectively. The best gamma parameter for the RBF kernel and C parameter was
set with cross-validation. For multi-view kernel k-means we used the code provided in
the paper by Gonen et al (5).

Discussion
The availability of genome-wide datasets for cancer patients have increased rapidly in
recent years. Methods that can effectively integrate these datasets can improve our un-
derstanding of cancer development and progression. To this end, we used supervised
and unsupervised learning strategies to predict patient survival in neuroblastoma. Our
supervised model can accurately predict overall survival and event-free survival profiles
of neuroblastoma patients in an independent cohort. We also inferred subgroups that
have distinct survival rates by combining multiple multi-dimensional datasets. Including
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microarray data in addition to RNA-seq datasets provided no improvement in silhouette-
score or log-rank test p-value indicating redundancy between the two datasets. However,
including aCGH data in addition to RNA-seq datasets have improved the silhouette-score
and resulted in a lower log-rank test p-value. Overall, our results suggest that integration
of multi-modal datasets can improve subtype definition in cancer.
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