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Abstract

In this paper, we provide a workflow to improve survival prognosis for neuroblastom patients. With a step of gene co-expression
network/module (GCN) mining in microarray and RNA-seq data, we extracted the molecular features from each module and
summarized them into eigengenes. Then we adopted the lasso-regularized Cox proportional hazards model to select the most
informative eigengen features in terms of association to the risk of matastasis. Nine eigengenes were selected which show strong
association with patient survival prognosis. All of the nine modules also have highly enriched biological functions or cytoband
locations. Three of them are unique modules to RNA-seq data, which complement the modules from microarray in terms of
survival prognosis. We then merged all eigengenes from the nine modules and used an integrative method called Similarity
Network Fusion to test the prognostic power of these eigengenes for prognosis. The prognostic accuracies are significantly
improved as compared to use all eigengens, and two subgroups of patients with very poor survival rate were identified.
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1 Introduction

Neuroblastoma (NB) is one of the most common cancers in
children. Those prognosed as high-risk (HR) subtype usually
have poor prognostic outcome [1]. Better survival prediction
with these HR patients will help doctors adjust their treatment
plans, thus improve the patients chances of survival. With
the abundant high-throughput transcriptomic data, a better
prognosis method may benefit from an integrative approach
which incorporates molecular and clinical data may extract high
correlative molecular features, and identify them as potential
biomarkers for patient survival prognosis. However, There are
two major problems to solve for integrative approach(1) the rel-
atively small number of samples compared to the large number
of measurements; (2) complementary nature of information pro-
vide by different types of data [2]. In this paper, we provide an
effective workflow to solve these problems. For complementary
nature in NB transcriptomic data, a study has compared RNA-
seq and Agilent microarray gene expression profiles for clinical
endpoint prediction of 498 pediatric patients, and found the
two technological platforms do not significantly affect perfor-
mances of the models [3]. However, instead of examining the
large number of genes genome-wide, which contains noise and
poses a problem on the statistical power of prognosis, we re-
duce the data dimensionality by mining GCN first. We mined
densely connected gene co-expressed modules, then summarize
each module into an “eigengene” using the protocol described
in [4]. To distinguish this study from another study we did
on NB, which was focus on efficiently integration of the tran-
scriptomic data and clinical data using concensus clustering,
in this paper, we probed into details for these eigengenes and

their biological function, and identify which of them can be
used as potential biomarkers to improve statistical power for
NB patient survival prognosis. Therefore, after the eigengene
construction and analysis, we built a lasso-regularized Cox pro-
portional hazards (lasso-Cox) model to compute the risk index
for each patient in HR group with each eigengene, and identify
the highly correlated ones [5]. Finally, we use an integrative
method called Similarity Network Fusion (SNF) to merge these
eigengenes and test the power of their prognostic power as po-
tential biomarkers [2].

2 Materials and methods

2.1 Dataset and preprocessing

Dataset are obtained from Neuroblastoma Data Integration
Challenge of CAMDA 2017 (http://camda.info), including
RNAseq and Agilent microarray gene expression profiles for
clinical endpoint prediction of 239 children patients in high risk
group. RNA-seq data contains 60778 probes, microarray data
contains 45198 probes, 9583 common probes were selected in
both RNA-seq and mircoarray data for further analysis and
data integration.

2.2 Gene co-expression analysis and summa-
rization

We applied our recently developed weighted network mining al-
gorithm local maximum Quasi-Clique Merging (lmQCM)[6] for
GCN mining. This algorithm is a greedy approach and allows
genes to be shared among multiple clusters, agreeing with the
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fact genes often participate in multiple biological processes. In
addition, lmQCM has been shown to find smaller co-expressed
gene clusters that are often associated structural mutations
such as copy number variations in cancers [6]. The adjacency
(weight) matrix was constructed using Spearman Correlation
Coefficient (SCC) for every pair of gene studied, as SCC can
accommodate the large non-linear range of RNA-seq data bet-
ter than Pearson Correlation Coefficient. Four parameters in
lmQCM algorithm need initialization, they are γ, α, t, and
β. Among them, γ is the most important one. It determines
the initia-tion of a new cluster by setting the weight thresh-
old for the first edge of the cluster as a sub-module. In our
GCN analysis, we transform the absolute values of the Spear-
man correlation coefficients between a pair of expression profiles
of genes into weights using a normalization procedure adopted
from spectral clustering, which have been shown to be effective
in previous studies [6]. Based on previous work [6], we chose γ
=0.80, t = 1, α = 1, and β = 0.4, which yielded 38 co-expressed
gene clusters from mircoarray and 24 co-expressed gene clusters
from RNA- seq.

2.3 Unique module analysis

We used Jaccard index less than 0.05 and Fisher exact test p
value greater than 0.05 as the metrics to determine the unique-
ness of a co-expression modules (Supplementary table-1). In
order to evaluate the degree of correlation of genes within each
module, we introduced the term Correlation Index using SCC
matrix. Correlation Index (C )of a module is formulated as:

C =
∑N

i=1

∑N
j=1(Wij − Iij)

2

where C is Correlation Index and W is the correlation matrix.
C is computed for GCN modules from both microarray and
RNA-seq. a P value is also computed for each C using the
randomly selected genes for the same number 1000 times to
obtain an average Correlation Index (C*). It is formulated as
below:

P − value = CR∑1000
i=1 C∗

2.4 Lasso-regularized Cox proportional haz-
ards model for feature selection

We built a lasso-regularized Cox proportional hazards (lasso-
Cox) model to compute the risk index of each patient, using
the eigengenes generated from GCN. Lasso penalty (i.e. L1
penalty) generates sparsity and outputs an informative subset
of features. To help select the parameters, we used a two-level
cross validation (CV) strategy—first leave-one-out CV then 10-
fold CV to select the best regularization parameter. Regular-
ized Cox proportional hazards model was built on the training
set using the selected parameter to compute the risk indices
of all patients. After that, patients were split into low-risk
and high-risk groups according to the median of risk indices of
the training examples. At last, we tested if these two groups
have distinct survival outcome using Kaplan-Meier estimator
and log-rank test, where p less than 0.05 was consider signifi-
cant. Since our initial goal is screening for all possible survival-
associated features, we did not apply multiple test compensa-
tion control such as FDR. The lasso-Cox model was learned

on the selected survival-associated features. Cox proportional
hazards regression model was fitted, and 95% confidence inter-
vals were computed to determine the prognostic values of our
lasso-Cox risk indices and clinical stage.

2.5 Similarity Network Fusion(SNF)

We applied SNF approach to integrate five microarray eigen-
genes with four RNA-seq eigengenes which were shown to be
highly correlated to survival by Lasso-Cox model. SNF con-
struct networks of sample for each available data type and then
fusing these into one network that represents the full spectrum
of underlying data. There are three parameter in SNF: k is
number of neighbors, µ is a hyperparameter, and T is number
of Iterations. We setting k is 30, µ is 0.8 and T is 20.

2.6 Gene ontology enrichment analysis

The online gene ontology enrichment tool ToppGene
(http://toppgene.cchmc.org) developed by Cincinnati Chil-
dren’s Hospital Medical Center was used for all of the module
functional enrichment analysis.

3 Results

3.1 Compare Co-expression modules between
microarray and RNA-seq data

After applying lmQCM, 38 co-expression modules from mi-
croarray and 24 from RNA-seq modules were identified. In or-
der to determine if data format affects the correlation as well as
modules identified, a comparison was performed between each
pair of modules from microarray and RNA-seq Among them, 17
co-expression modules from microarray and 10 from RNA-seq
are unique to its own data type (Supplementary Table-1), and
several of them are enriched with biological processes, molec-
ular functions or specific pathways related to cancer physiol-
ogy or to neurological functions (Supplementary table-2,3). By
computing the correlation indices of these unique modules, we
discovered that most of the unique GCNs from the microarray
data are not highly correlated in RNA-seq data (Figure 1(b)),
whereas the unique GCNs in the RNA-seq data are weakly cor-
related in microarray data (Figure 1(a)).

3.2 Identify survival-associated eigengenes

We tested each eigengene from all of the microarray and RNA-
seq GCN for the statistical significance of differentiate overall
survival between low and high-risk groups by Kaplan-Meier es-
timator. Log-rank test results show 14 eigengenes were signifi-
cantly related to prognosis (p less than 0.05). The log-rank test
results of all survival-related variables are listed in Table 1,2,3.
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3.3 Survival- associated feature selection us-
ing lasso-regularized Cox proportional
hazard model

We further filtered for the features highly correlated to survival
among the 14 eigengens features. We built a lasso-regularized
Cox proportional hazard model to select the most informative
features and calculate a risk index for each patient. The re-
sults show that the log-rank test p values are 1.71e-10 for nine
identified features and 3.88e-5 for clinical stage respectively.
Among them, five are the survival-associated eigengenes from
microarrary data (M2, M7, M10, M36, and M37), and four
from RNA-seq (R2, R7, R17, R21). Especially, R7, R17, R21
are from RNA-seq only modules, these modules are not present
in microarray data. Most of the nine modules are highly en-
riched with biological functions: M2 (127 genes) and R2 (268
genes) are highly enriched with cell cycle genes (contain 39 and
64 cell cycle genes each, Bonferroni-corrected-p-values 1.05E-70
and 3.88E-78 respectively). Although they highly overlap each
other, the additional 141 genes in R2 contribute more informa-
tion for the prognosis with SNF in the analysis below. M10
and M37 are highly enriched with immune response genes, M7
is highly enriched with extracellular matrix organization genes
(p value 3.01E-12). All of these agree with the previous pan-
cancer study that the top three most common GCN in cancer
are cell cycle, immune response and extracellular matrix orga-
nization genes [4]. M36 contains no enrihced molecular function
or biological process, but five of the genes are co-localized on
the same cytoband, which could indicate a structural variant in
NB patients. R17 and R21 are enriched with RNA polymerase
II transcription regulatory genes (Supplementary table-3).

3.4 Prognostic prediction based on Integra-
tive analysis

We tested prognostic power of these selected eigengenes com-
bined as biomarkers. This was carried out in two steps: First,
we tested GCNs for prognosis from microarray and RNA-seq
separately, and compared the prognosis results between above
selected eigengenes with all of the eigengenes in one data type.
We used spectral clustering to classify the NB patients by the
five eigengenes vs by all eigengenes from microarray, and the
four eigengenes vs. all eigengenes from RNA-seq modules re-
spectively. The results shown the selected nine eigengenes can
greatly improve spectral clustering results: in microarray data
type, the p value is reduced from 0.00147 to 2,26e-7 (Figture 2b
and Figure 2d); in RNA-seq data type, the p value is reduced
from 0.0241 to 2.58e-7 (Figure 2c and Figure 2e). Second, We
chose SNF to integrate above nine eigengenes. The result show
that using these nine eigengenes performed better in risk prog-
nosis than using all 62 eigengenes from both data types. The
log-rank test p value is reduced to 3.84e-11 as compared to
3.46e-6 (Figure 2c and Figure 2d) .The prognosis is also better
than using clinical stage (p value 3.88e-05 Figure 2a). More im-
portantly, the prognosis using the nine eigengenes are able to
further stratify the high risk patients. One additional subgroup
of patients with extremely poor survival were identified. The
survival rate of the worst group is less than 40% within the first

50 months (Figure 2(h))

4 Conclusion

In this study, we first compared GCNs mined from microar-
ray and RNA-seq data. We discovered that each data format
contains unique GCNs, which are enriched with clear biologic
functions.. By multivariate Cox regression analysis, we identi-
fied nine survival-associated eigengenes features from microar-
ray data (5 eigengenes) and RNA-seq data (4 eigengenes). To
test the power of the combination of these nine eigengenes as
prognostic biomakers, we use spectral clustering as well as SNF
for survival prognosis, these nine eigengenes significantly im-
proved the survival prognosis by several magnitude in terms of
log-rank test p-value, as compared to using all of the modules,
modules from one data type, as well as to the clinical stage
information. This indicates that the integration of both data
types provide more survival-associated information, which not
only help achieve a more accurate survival prognosis, but fur-
ther identifies one subgroup of patients with very poor survival
among high risk patients.
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(a) (b)

Figure 1: (a) Correlation index with each unique microarray module genes in microarray, RNA-seq data, and equal number
random genes in microarray data. (b)Correlation index with each unique RNA-seq module genes in RNA-seq data, microarray,
and equal number random genes in RNA-seq data.

R7 R9 R13 R15 R17

P-value 0.0087 0.0101 0.0111 0.0095 0.0058
R20 R21 R22 R23 R24

P-value 0.0039 0.0079 0.0093 0.0119 0.0081

Table 1: P-value of Correlation Index with 10 unique modules in RNA-seq data

M3 M4 M5 M8 M9

P-value 7.4766e-04 6.6568e-04 5.1788e-04 6.078e-04 5.377e-04
M11 M13 M19 M20 M21

P-value 6.5468e-04 3.9515e-04 0.0013 0.0015 4.5433e-04

M22 M28 M30 M31 M32

P-value 7.7567e-04 2.0277e-04 0.0077 0.0022 3.0295e-04

M34 M38

P-value 0.0109 0.0053

Table 2: P-value of Correlation Index with 17 unique modules in microarray data

M2 M7 M10 M15 M30 M36 M37

P-value 5.68e-07 0.0178 0.0239 0.0142 0.0138 0.00144 0.00103
R2 R3 R7 R8 R17 R18 R21

P-value 1.7e-08 0.00276 0.000118 0.0467 0.00314 0.0039 0.0105

Table 3: Log-rank test of survival-associated 14 eigengens
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(a) Clinical Stage (b) Spectral clustering use all 38 Microarray eigengenes

(c) Spectral clustering use all 24 RNA-seq eigengenes (d) Spectral clustering use 5 high survival associated microar-
ray eigengenes

(e) Spectral clustering use 4 high survival associated RNA-seq
eigengenes

(f) Lasso-Cox

(g) Similiarity Network Fusion (h) SNF integrate 9 high survival associated eigengens

Figure 2: Compare between multiple predicting survival outcome
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