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Background

Metagenomics is the study of collection of microbial genomes from organisms populating a sample, using DNA
sequencing [1]. The field has a broad range of applications, including medicine and environmental studies,
and the aim is usually the taxonomic identification of microbes and/or their functional characterization [2, 3].

Short read NGS (Next Generation Sequencing) technologies, such as the Illumina HiSeqTM and MiSeqTM

platforms, are widely used in metagenomic studies. However, rapid or even real-time and on-site identifica-
tion of microbial communities and their functional characterization is of fundamental importance in some
scenarios; for example, the identification of pathogens in a hospital setting [4].

Oxford Nanopore Technologies’ MinION is a portable, realtime, single molecule sequencer that has been
under development for the past five years. The reads produced by the MinION are “long reads”, with an
average length of 10 kb and a maximum length of close to one megabase (at present). These reads are much
more error-prone than the short reads produced by NGS methods.

Another feature of the MinION is that individual reads become accessible as soon as they have been
sequenced and so the downstream analysis can be performed while the device continues to sequence more
reads. This feature will allow researchers to obtain answers to their questions almost in real time.

There exist many different computer programs and webservers for analyzing metagenomic datasets, aim-
ing at taxonomic and/or functional binning and/or profiling the given data, such as MEGAN [5], MG-RAST
[6] or Kraken [7]. Such tools are designed and engineered to work fast and accurately on short reads. Long
reads pose a different set of challenges and require that existing approaches be adapted to address them.
Here, we present a new variant of the lowest common ancestor (LCA) algorithm that is designed to perform
taxonomic binning of long reads, and we demonstrate the use of the method on datasets provided by “The
Oxford Nanopore ‘Wiggle Space’ Challenge” by CAMDA 2017, and on simulated Nanopore reads.

Methodology

Analysis Pipeline

We extracted reads in FastA format from base-called Fast5 files of the “wiggle space challenge” using poretools
[8]. We have not yet made use of Illumina data associated with some of the MinION runs so as to perform
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error correction or hybrid assembly. We only consider microbial datasets that contain over 3000 reads, as
the others do not produce a sufficient number of alignments.

For taxonomic binning and functional characterization of long-reads, we use a homology based LCA
approach. We use LAST (v847) [9] to align all reads to the NCBI-nr (downloaded on 24.04.2017) protein
reference database. Although LAST requires more than a day to build the index for NCBI-nr on a server,
once the index is built it is extremely fast (aligning hundreds of long-reads per minute using 32 cores). In
addition to its speed, it is also capable of producing frame-shift alignments, which is crucial for the analysis
of MinION reads, given the current high rate of erroneous insertions and deletions in nanopore sequencing.
For the challenge data, we ran LAST with the setting -F 5, setting the frameshift cost to 5, and otherwise
using default settings.

MEGAN [5], our tool for taxonomic- and functional binning, and interactive exploration and visualization
of metagenomic data, has been optimized to work efficiently on large numbers of large short read datasets.
A number of the optimizations, and all binning algorithms, are based on the assumption that any given read
is so short that overlaps at most one gene significantly. This assumption usually does not hold for long reads.

To address this, we have implemented a number of new algorithms and features that are specifically
designed for long reads and that are bundled in a new long read (LR) mode of MEGAN, available since
release 6.8.0 (May 2017).

As mentioned above, we propose to use the program LAST to compare all long reads against the NCBI-nr
protein database. The output of LAST is then parsed and analyzed within MEGAN using the LR mode.
We will refer to this analysis pipeline as LAST+MEGAN-LR.

For taxonomic binning of long reads, we have developed a binning algorithm called the cover-based LCA.
Input is a long read r and the set M of alignments of the r to a protein reference database. We will describe
the algorithm in two parts. First, for a given read r we will describe how to assign a weight for every taxon
to which the read aligns. Then we will discuss how to place r on a taxonomic node using the weighted LCA
algorithm.

Let r = r1r2 . . . rn be a long read and let M be a set of alignments of r against a protein reference
database. For any alignment a ∈ M , let (a) = bitscore(a)/length(a) denote the bit score per base. Let Mt

be the set of alignments that are associated with a given taxon t. For any position i in r, let S(i) ⊆ M
be the set of alignments the cover the position and are deemed significant with that property (E.g. we may
require that the bit score of any alignment in S(i) lies within 10% of the best score in S(i). For any taxon
t, let Mt be the set of all alignments in M that are associated with taxon t.)

For each position i in r and any taxon t associated with an alignment in M , we define the position-taxon
weight as

ω(i, t) =

∑
a∈S(i)∩Mt

h(a)∑
a∈S(i) h(a)

,

that is, the proportion of significant alignments that cover position i, and are associated with taxon t,
weighted by bit score per base.

For each taxon t that is associated with any alignment in M , we define the cover-weight for r and t as

ω(r, t) =

n∑
i=1

ωi(t),

that is, the sum of position-taxon weights for r and t.
The second part of the algorithms consists simply of placing the read r on the lowest taxonomic node

that lies above a fixed percentage (50%, say) of the sum of all cover-weights computed for taxa to which the
read aligns. (This is sometimes called the weighted-LCA algorithm.)

In summary, for a given read, the covered-base LCA determines weights for taxa to which the read aligns,
based on amount of read that the alignments cover (weighted by bit scores per base), and then uses the
weighted LCA to place the read.

Functional binning of short reads is usually performed by assigning each read to a class in a functional
classification system such as InterPro [10] or eggNOG [11], based on its alignments.
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This is often done using a simple best-hit strategy, as follows. For a short read r, let S be the set of
significant alignments of r to a protein reference database such as NCBI-nr. Now, determine the highest-
scoring alignment a in S for which the appropriate functional class is known and assign the read to that
class. Note that any read is assigned to at most one functional class (and many reads are not assigned to
any class, because the corresponding reference proteins are of unclassified.)

A long read may contain multiple genes and so we must modified the best-hit strategy to accommodate
this. Let r be a long read and let M be the set of alignments computed for r. Detect the set of all segments
s1, . . . , sm along the read where alignments pile up, ideally such that each segment corresponds to a different
gene. For each such segment si, determine the set of significant alignments Si that cover the segment. Here,
significance is based bit score per base, to account for large differences in alignment length and an alignment
must lie within 10% (say) of the best bit score per based on the given segment. Each segment si is then
assigned to a functional class using the best-hit strategy applied to Si.

In this study, we set the PercentToCover parameter in MEGAN to 50.0 and otherwise used the default
parameters in long read mode.

Results and Discussion

We evaluated the performance of our approach on selected ”wiggle space challenge” datasets, and on synthetic
Nanopore datasets generated using nanosim [12]. For challenge datasets, for which the source organisms are
known, we assumed that the true positive binning of reads is to exactly these organisms. We calculated
sensitivity as the rate of true positives in total amount of data that is available; and specificity as the rate
of true positives in total amount of data that was reported (TP / TP + FN). MEGAN can report either the
number of reads assigned per taxa, or the sum of aligned base pairs for all the assigned reads. Because of
the great variability of the length of long reads, we used the assigned base pair measure (Figure 1).

Our sensitivity on the challenge datasets is usually quite low. This is mainly due to the error-prone
Nanopore reads not producing any alignments at all in most of these datasets. The Staphylococcus aureus
run, for example, has 74748 base-called reads, whereas LAST reported an alignment for only 4715 of them.
We will look into improving our sensitivity at assigning error-prone long reads to taxonomic nodes by

• possibly improving base-calling using new base-callers, or

• by employing the provided Illumina datasets so as to error-correct the long reads.

Our analysis of the mystery data was severely hampered by the fact that 85% of the reads do not produce
any alignments. Among those that aligned to reference sequences, a large portion was assigned to human
and Escherichia coli (Figure 2). A significant amount of reads were also assigned to Plasmodium ovale, a
parasitic protozoa. However, exploration of those reads, using MEGAN’s new long-read inspector tool, casts
doubts on their assignments as many of them also have alignments to Staphylococcus aureus and Streptococcus
pneumoniae, both of which are also parasitic. We intend to improve our analysis of this dataset by extracting
the reads assigned to these nodes and aligning them against genomes of these suspected parasites instead of
the proteins. We also plan to compute a functional characterization of this dataset.
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Figure 1: Sensitivity and Precision of LAST+MEGAN-LR computed for aligned base-pairs assigned at species, genus
and family levels.

Figure 2: Bar chart of the top 50 taxonomic bins calculated for the mystery data identified by LAST + MEGAN-LR.
Assignments have been projected to species level and only species are shown.

We simulated 2 hypothetical metagenomic datasets. The first is based on nine species of the family
Enterobacteriaceae, from three different genera. We simulated 1000 reads from each species. Here, our aim
was to create a very challenging situation for homology based methods as Escherichia coli has a vast amount
of reference sequences in biological databases, which creates a huge bias towards it. LAST + MEGAN-LR
was heavily affected by this problem and almost all reads from Shigella and many from Cronobacter genera
either got assigned Escherichia coli or to higher taxonomic nodes.
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The second simulation involved 2000 reads for five species randomly chosen from NCBI’s Prokaryotic
RefSeq Genomes database (Table 1). The performance of LAST + MEGAN-LR on this easy dataset was
general very good, except for Edwardsiella tarda, which we could identify only at genus level. We would like
to note that the remaining 25 to 30% of base-pairs that were not assigned are due to random sequencing
artefacts in the Nanopore simulation, which is modelled in nanosim, rather than unreported false-negative
alignments.

These datasets are available at http://ab.inf.uni-tuebingen.de/data/software/megan6/long-read-data.

Table 1: Percentage of assigned and correctly assigned base pairs for simulated Nanopore reads of 5 organisms
randomly chosen from NCBI’s Prokaryotic RefSeq Genomes.

% correctly at level
Species total bases % assigned species genus family

Anoxybacillus-amylolyticus 15672248 78.3 50.9 68.5 76.9
Edwardsiella tarda 15600545 78.9 0.2 64.8 65.7
Methanobrevibacter-sp.-YE315 15336947 78.9 74.2 78.8 78.8
Methanocella paludicola 15678389 76.4 75.7 76.2 76.2
Myxococcus-hansupus 15608566 81.3 59.6 79.7 79.9
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