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1 Introduction 

Neuroblastoma is the most frequently diagnosed cancer in the first year of life and the most common 

extra-cranial solid tumor in children. It accounts for 5% of all pediatric cancer diagnoses and 10% of all 

pediatric oncology deaths. These numbers have improved over the past decade, but accurate prognosis for 

the disease has remained a challenge (Bosse and Maris, 2016). The difficulty is due to the highly 

heterogeneous nature of neuroblastoma; cases can range from tumors that spontaneously regress on their 

own, to aggressive tumors that spread unabated by treatment.  

In 1980, the MYCN oncogene was identified as a biomarker for clinically aggressive tumors. It has since 

been one of the most important markers for stratifying patients. Genome-wide association studies have 

found many other genes having alleles that are associated with an increased risk of neuroblastoma. 

However, while aberrations of these genes indicate an increased susceptibility to the disease, these 

markers are less useful in stratification once the patient is diagnosed.  

Predicting survival outcomes using gene expression data has been explored with promising results 

(Formicola et al., 2016; Tan et al., 2008). These studies use gene expression profiles from microarrays 

with classification methods to stratify patients into risk groups.  

In this study, we undertake the CAMDA 2017, Neuroblastoma data integration challenge. In our analysis, 

clinical data and expression profiles from RNA-Seq data are integrated together to model survival times 

directly. The effects of using various feature levels of expression profiles (genes, transcripts, and introns) 

are examined and compared to a model without RNA-Seq data. The inclusion of RNA-Seq profiles is 

shown to increase the prediction accuracy for both overall survival and event free survival times. These 

models can also be used as a classifier to accurately identify high-risk groups. We end by discussing our 

continued research into the use of an ensemble predictor, which will integrate the several models 

developed here to further improve prediction accuracy. 

2 Datasets 

The datasets can be accessed from the GEO database with accession number GSE49711 (Su et al., 2014; 

Zhang et al., 2015). The data are comprised of tumor samples from 498 neuroblastoma patients from 

seven countries: Belgium (n = 1), Germany (n = 420), Israel (n = 11), Italy (n = 5), Spain (n = 14), United 

Kingdom (n = 5), and United States (n = 42). Several clinical variables are available for each patient, 

along with the RNA sequencing information from their tumor sample. Su et al. (2014) randomly 

separated the data into a training set and testing set; this partition is recorded with the clinical data and is 

also used here. 
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2.1 Clinical data  

The clinical data consist of 11 variables. In this 

study, three of these variables are used as covariates 

in our models; these include sex, age, and MYCN 

status (see table 1).  

There are two outcomes of interested, namely 

overall survival and event free survival. Overall 

survival is calculated as the time from diagnosis to 

death from disease or the last follow-up date, if the 

patient survived. Event free survival was calculated 

from diagnosis to the time of tumor progression, 

relapse, or death from disease or to the last follow-

up, if no event occurred.  

The censoring rates are shown in table 1 as death 

from disease and progression (“No” corresponds to 

right-censoring).   

2.2 RNA-Seq Dataset 

The RNA-Seq data provide annotations at three 

feature levels, giving datasets comprised of 60,776 

genes, 263,544 transcripts, and 340,414 introns, respectively. A hierarchical version of the transcript 

annotation is also provided but was not used.  

Genes and transcripts without an NCBI ID were removed. Any RNA-Seq variables with over 90% of 

zeroes for counts were also omitted. A database of 3681 important genes related to neuroblastoma was 

obtained from the GeneCards Suite (Safran et al., 2010). This dataset was used to subset the remaining 

genes and transcripts, resulting in 3401 genes and 48288 transcripts. For the introns, their predictive 

ability for survival time was ranked by fitting each intron in a Cox proportional hazards model for the 

overall survival time of patients in the training set. The top 10,000 introns with the smallest p-values 

(testing that the coefficient is zero) were used. 

3 Accelerated failure time (AFT) models  

The AFT model relates the log survival times to a linear combination of the covariates using the 

regression equation  log(𝑦) = 𝑋𝛽 +  𝜖, where 𝑦 ∈ ℝ+𝑛
 denotes the observed survival times for 𝑛 

observations, 𝑋 the 𝑛 × 𝑝 matrix with columns containing the predictor variables for each observation, 

𝛽 ∈ ℝ𝑝 the unknown parameter of interest, and 𝜖 ∈ ℝ𝑛 an unobservable random error that is assumed to 

be independent of 𝑋. The predictors 𝑋 are centered and scaled prior to fitting the model.  

Since 𝑝 > 𝑛, ordinary least squares (OLS) is not appropriate and would over-fit on the observed data. We 

consider four alternative approaches to fit the AFT model. These involve latent factor and regularization 

techniques. Both of these require the selection of one or more tuning parameters. These parameters can be 

determined using 𝑘-fold cross validation. In this study, 10-fold cross validation is used and implemented 

in R using two packages discussed in the following sections. 

3.1 Dimension Reduction  In order to fit the AFT model with 𝑝 > 𝑛  predictors, we consider four 

different dimension reduction techniques. These include partial least square regression (PLS) (Boulesteix 

Table 1: Clinical variables 

Variables Training Testing  

Sex   

     Male 146 141 

     Female 103 108 

Age   

     < 18 months 156 144 

     ≥ 18 months 93 105 

MYCN Status   

     Normal 199 202 

     Amplified 47 45 

     N/A 3 2 

Death from Disease   

     Yes 51 54 

     No 198 195 

Progression   

     Yes 89 94 

     No 160 155 
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and Strimmer, 2007), sparse partial least square regression (SPLS) (Chun and Keles, 2010), the lasso 

(Tibshirani, 1996) and the elastic net (Zou et al, 2005). These procedures require the selection of tuning 

parameters, which is done by 10-fold cross validation using the R packages “spls” and “glmnet.” 

4 Imputation for right-censoring  

Let {(𝑦𝑖 , 𝛿𝑖 , 𝑋𝑖) | 𝑖 = 1, … , 𝑛} denote the set of observed survival times, indicators for death from disease, 

and the p-dimensional vector of covariates for the 𝑛 patients in the dataset. Let 𝑇𝑖 denote the true survival 

times for patient 𝑖 = 1, … , 𝑛. If the 𝑖th patient’s survival time is censored (i.e. 𝛿𝑖 = 0) then we only 

observe 𝑦𝑖 < 𝑇𝑖. That is, 𝑇𝑖 is unobserved.  

To deal with this right-censoring, the dataset imputation procedure from Mostajabi et al. (2011) is used. 

An initial estimate 𝛽̂(1) is obtained by fitting the AFT model using only the uncensored data. Then, in 

each of 𝑘 = 1, … , 𝑛𝐾 iterations, first calculate the Kaplan-Meier estimate 𝑆̂(𝑘)(𝑒) of the distribution of 

model error using {(𝑒𝑖, 𝛿𝑖) | 𝑖 = 1, … 𝑛} where 𝑒𝑖 = log(𝑦𝑖) − 𝑋𝑖
𝑇𝛽̂(𝑘). Then, 𝑛𝐽 new datasets are imputed 

by replacing each censored log(𝑦𝑖) with 𝑋𝑖
𝑇𝛽̂(𝑘) + 𝑒𝑖

∗, where 𝑒𝑖
∗ is a sampled model residual from the 

conditional distribution 𝑆̂(𝑘)( 𝑒 | 𝑒 >  𝑒𝑖). This condition ensures that the imputed observation will be 

larger than the observed right-censored time. The new datasets are used to compute estimates 𝛽̂𝑗
(𝑘)

 for 

𝑗 = 1, … , 𝑛𝐽. At the end of the iteration, the estimate is updated by 𝛽̂(𝑘+1) =
1

𝑛𝐽
∑ 𝛽̂𝑗

(𝑘)𝑛𝐷
𝑗=1 . The process is 

repeated for 𝑛𝐾 iterations and the final estimate 𝛽̂(𝑛𝐾) is returned. 

To balance between computation time and simulation variability, we chose to run 𝑛𝐾 = 5 iterations, 

imputing 𝑛𝐽 = 10 datasets in each. 

5 Results 

Thirteen models are considered in total, and each is used to estimate overall survival and event free 

survival. For a baseline of comparison, a “null” model is fit with clinical variables only (no RNA-Seq 

data). The other twelve models use clinical variables and RNA-Seq data; these models use genes, 

transcripts, introns, or both transcripts and introns, each fit using the four methods PLS, SPLS, lasso, and 

elastic net. Performance is measured using a weighted root mean squared prediction error (MSPE), which 

is defined by 

rMSPE = (
1

∑𝛿𝑖
∑ 𝛿𝑖(𝑦𝑖 − 𝑋𝑖

𝑡𝛽̂)
2

𝑛

𝑖=1

)
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5.1 Prediction of survival times 

Overall, the models using RNA-Seq data all perform better than the model with clinical variables only 

(see figure 1). The lasso and elastic net provide better accuracy than SPLS and PLS when predicting 

overall survival; they also perform better for event free survival, but the difference is less stark. 

Interestingly, there do not seem to be substantial differences in the predictive capabilities between the 

different RNA-Seq datasets, even after integrating both transcripts and introns into the model. 
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5.2 Pathway analysis 

A pathway analysis is performed to evaluate the potential function relevance of the genes selected by the 

models. We consider the two fitted models G-4 and T-4, which used the elastic net on genes and 

transcripts, respectively. When predicting overall survival, 185 genes were given positive coefficients by 

the G-4 model. The Ras, PI3k-Akt, TGF-𝛽, and cell cycle pathways were all expressed; these are related 

to the cell survival process and are known to be major signaling pathways in cancer (Vogelstein et al., 

2013).  For event free survival, the model selected only 35 genes, but the same five cell survival pathways 

were being expressed. 

For the T-4 model, 404 transcripts were selected when estimating overall survival. The pathway analysis 

is done on the genes containing these transcripts. As before, several cell survival pathways were 

discovered: Ras, PI3k-Akt, Jak-STAT, MAPK, and cell cycle. When predicting event free survival, 198 

transcripts were selected. In this case, the MAPK and cell cycle pathways did not show up.  

5.3 Kaplan-Meier analysis 

These models can also be used to classify patients into high-risk and low-risk groups by setting a 

threshold for the survival time. Here, we show Kaplan-Meier survival curves using this approach; a 

patient is classified as high-risk if their predicted survival time is less than 5 years. While the SPLS model 

has lower prediction accuracy for individual survival times, it produces a wider range of predicted values 

than the lasso and elastic net, which makes it better suited for a classification scheme. The G-2 model 

using genes with SPLS is used here; the plots in figure 2 show the resulting survival curves on the 

validation dataset. 

 

 

 

Figure 1: Performance measures for each model. The circles and ×’s correspond to overall 

survival and event free survival, respectively. The blue, red, orange, and brown points correspond 

to models using genes, transcripts, introns, and introns with transcripts, respectively. The numbers 

1-4 represent the PLS, SPLS, lasso, and elastic net methods. 
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6 Discussion  

In this study, we used the AFT model with four dimension reduction techniques and a dataset imputation 

scheme to predict overall survival and event free survival times of neuroblastoma patients. Three feature 

levels of an RNA-Seq dataset were considered. Models were fit using the features independently and 

integrated together (with introns and transcripts). The predictive performances are similar among these 

four scenarios. The performance depends most on the dimension reduction method used; the lasso and 

elastic net provide the best accuracy overall. A pathway analysis revealed that the elastic net selected 

genes and transcripts that are involved in several major signaling pathways in cancer; this attests to the 

functional relevance of the genes selected by the model.  

The predictive powers of these models are all individually better than the baseline model using only 

clinical data. However, we suspect that by integrating these 16 models together using an ensemble 

procedure, even better prediction accuracy can be achieved. An ensemble approach also allows for several 

performance measures to be taken into account, rather than just the rMSPE. We are actively pursuing this 

line of research and will have results in the near future. 
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Figure 2: Kaplan-Meier analysis of survival times when using the G-2 model (genes with SPLS) 

to classify patients.  If the predicted survival time is less than 5 years, the patient is classified as 

high-risk. The difference between the survival curves for both overall survival and event free 

survival are statistically significant (p-value < 1E-16). 

 


