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In recent years we have been witnessing a great increase of available biomedical data that is 
being collected from high-throughput experiments, with many datasets of genomic scale 
(Benton et al, 1996; Mushegian et al, 2011). The Big Data bottleneck experienced for both 
basic and applied research, however, which remains rate-limiting in the translation of 
experimental advances to the clinic, is the identification and interpretation of biologically 
relevant patterns in these data. A lot of hope is now being placed in analyses approaches 
which combine measurements from these different sources (Searls et al, 2005). In order to 
further explore and take advantage of complex big data sets, novel and increasingly 
sophisticated computational methods are being developed. Different data types may capture 
complementary aspects of information and, investigated together, could help shed light on 
complex relationships of interest, such as between the impact of gains and losses in gene 
copies and the cis or trans expression of specific genes related to tumour progression, and the 
eventual consequences for cancer survival time prediction. Indeed, a variety of analyses 
incorporating multiple sources of evidence have been reported to help advance our 
understanding of biological systems (Hartemink et al, 2002; Nariai et al, 2005; Hecker et al, 
2009). With complementary data collected for each patient, it is natural to try and combine all 
a patient's interrelated information into a single joint representation. Recently, network 
representations have been explored to exploit not just the complementary nature of the data 
sources but also similarities across patients (Wang et al, 2014). 

Networks have already been applied to identify dysregulated pathways(Pham et al, 2011; 
Verbeke et al, 2015), optimize biotechnological processes (Mizrachi et al, 2017), and predict 
patient survival (Wang et al, 2014). We here introduce a novel network-based approach for 
the integration of multiple molecular and clinical data types that also incorporate prior 
knowledge from curated databases, exploring performance in comparative quantitative 
benchmarks. Our algorithm creates a multiple-layer network (Kivelä et al, 2014), where the 
highest level is a network of patients, and each patient has information from multiple data 
types, where each data type is characterized itself by a network (Fig.1). Notably, prior 
functional knowledge is incorporated in their construction. This structure facilities an 
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identification of similarities not only between patients but also of functional modules at the 
molecular level, across data-types. 

TCGA datasets were studied in previous CAMDA challenges and remain a valuable source 
of data for large-scale analyses. In this extended abstract, we report first results of applying 
our network analysis to TCGA data sets for a well studied cancer, Breast Invasive Carcinoma 
(BRCA). These data are particularly well suited for initial method validation, as it comprises 
a large cohort of patients with matched profiles for genomic methylation, RNA-Seq and 
miRNA-Seq gene expression, complemented by detailed clinical information. Our work will 
be extended to also examine this year’s CAMDA neuroblastoma data sets exploiting dual 
gene expression and matched copy-number data in time for the conference in July. 

In order to examine the explanatory power of our network we first develop a personalized 
approach to patient stratification. We will show that already this first application of our 
algorithm considerably improves on a related state-of-the-art network approach (Wang et al, 
2014) in cancer patient stratification, showing a significant prognostic effects in Cox 
regression and Hazard Ratio (HR) of >30% already from the stratification alone. Subsequent 
work will characterize the underlying molecular modules and their clinical relevance. 

Method description 

We link patients in a multi-layer network with N elementary networks per layer, where a 
node represents a patient (Fig. 1) and lower-level networks are created for each measurement 
type provided for the patient (Fig. 2). The measurements can be, e.g., gene expression, copy 
number experiments, methylation of genomic DNA, etc. 

 

Figure 1: multi-layer network design 
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Figure 2: elementary layer design 

In this setting we are looking for similarities (and possibly differences) between the nodes, 
i.e., patients. In general, for any choice of a patient-specific multi network, for each patient 
pair, we define a level-by-level metric and stack those metrics into a vector. In the patient 
network we thus obtain vector-valued edge weights (Fig. 3), reflecting similarity across 
different layers of biology that define our multi networks.  

For constructing the lower-level ‘elementary’ networks (Fig. 2) we apply a novel data 
integration approach based on a recently published algorithm (Pham et al, 2011). It uniquely 
combines measurements and existing knowledge by integrating structured information from 
several sources, collecting genes into an interconnected network of functionally-related gene 
sets, through KEGG pathways and GeneOntology functional groups. Edges between nodes 
are weighted according to a probabilistic strength of evidence for differential effect in genes 
relevant to the biological functions in which the corresponding biological pathways are 
involved. In the original application this network was applied to identification of 
dysregulated pathways in cancer. We here use the network of KEGG gene sets as the first 
layer in our multi-layered patient network. 

Research on multiple-layer networks is novel and ongoing, and there are no established 
algorithms for meaningful clustering within our complex network that could readily be 
applied. We therefore start by looking for clusters of similar gene sets in each elementary 
network of KEGG gene sets of a patient. We then tested spectral clustering instead for this 
step (Ng et al, 2001; Luxburg, 2007) but resulting groups were of no obvious value for 
prognosis. We could, however, successfully exploit stochastic block models (Leger, 2014) in 
identifying meaningful clusters. Stochastic block models (SBM) were previously applied to 
multi-layer networks with only one elementary network per entity (Stanley et al, 2016). Here, 
we successfully generalize this step-wise to multi-layer networks accommodating more than 
one data-type, where we apply the algorithm to the different data types one at a time. 
Integrated Classification Likelihood (Biernacki et al, 1998) was used for selecting the optimal 
number of clusterings for each network. We have since also considered searching for 
recurrent heavy subgraphs (Li et al, 2011) in our network, and research in this direction is 
still ongoing. 

We can then compare, across patients, the KEGG gene set groups identified by SBM for each 
specific data type by using a shared information distance between sets of clusterings, namely 
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the variation of information (VI) metric (Meilă, 2007). Its characteristics as a metric ensure 
that patient-patient distances can directly be compared between the networks constructed for 
the different data types. This eventually yields vector-valued edge weights between patients, 
with each vector coordinate corresponding to a data type (Fig 3. right-hand network). 

 

Figure 3: patient-patient network 

Finally, these vectors can be summarized by computing the average VI metric across data 
types for each edge. We can then successfully identify similar patients using a spectral 
clustering algorithm (Ng et al, 2001; Luxburg, 2007), analogous to earlier network analyses 
(Wang et al, 2014). Here the optimal number of clusters was selected by gradient descent 
(Zelnik-Manor & Perona, 2005). 

Results and Discussion 

In order to evaluate if our constructed network captures meaningful patient-patient 
relationships, we performed Cox proportional hazards regression analysis on the patient 
stratification arising from the network. We compare the predictive power of the groups of 
patients obtained by our network approach with the groups identified by SNF, an alternative 
state-of-the-art network-based method (Wang et al, 2014). In addition we examine the effects 
of data integration in our approach, comparing results for integrative and single-track 
analyses. Cox log-rank test helps in evaluating the significance of differences in survival 
profiles between subgroups. The Hazard Ratio (HR) further explains how big an impact being 
in a particular patient group has on survival. As shown in Tab. 1 our integrative multi-layer 
network approach finds highly significant differences in survival among patient groups and 
with a substantial effect size (>30%). Apart from ‘age’ alone, which has only a very small 
effect on the survival time of a patient, none of the other examined predictions was 
significant, including the single-track or integrative network-based analysis by SNF, showing 
the value of our integrative network for exploring a patient-patient relationships. 
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Table 1: comparison of predictive power of patient grouping using different methods / variables 

With these encouraging initial we will apply our approach to other cancers and data types, 
specifically the CAMDA 2017 neuroblastoma dataset, which provides RNA-Seq and 
microarray expression, genomic copy number data, and matched clinical profiles. 

To improve the immediate clinical relevance of our work, we will examine the performance 
of predicting the survival time of a single hitherto unseen patient. Here the network will first 
be build with a representative cohort of patients, creating a patient-patient multi-layer 
network for context. Per-patient networks of each data type and across data types can then be 
built for any ‘new’ patients. These are then merged into the patient-patient network, 
facilitating prognosis by the respective patient-patient network neighbourhood. The charm of 
this approach is that any additional patients improve on the original network in partially 
supervised predictions. As more diagnostic data becomes available for new patients, the 
additional labels immediately improve prediction power. 

We will also examine the relevance of the functional modules identified in lower-level 
networks. In particular, we will examine network-based Cox regression, which has recently 
been applied to identify biomarkers predictive of survival times by using gene co-expression 
networks to inform sparse Cox regression (Iuliano et al, 2016). We can directly apply this 
idea to our elementary networks of KEGG pathways per data type, testing if the additional 
abstraction level to functional modules and the incorporation of prior knowledge through the 
GeneOntology used in the construction of these networks helps identify strong predictors at 
the level of functional modules. It will particularly be interesting to test if this improves 
generalization accuracy across different (sub)cohorts, a challenge often underestimated in the 
identification of (potentially confounded) biomarkers from single cohort studies. The aim 
would be to find the most relevant biomarkers in a cohort that will generalize well to future 
patients, rather than the incidentally strongest in a single cohort. Future work can then 
investigate non-uniform network-based weighting of patients in this context, i.e., making sure 
all patient types enter the regression with comparable weights. This may be particularly 
relevant for seeking functional insights. 

In future work (after the conference) we will elso compare alternative measures of 
multi-layer network similarity, e.g, exploring heavy subgraph detection. 
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