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Abstract 
Background: Neuroblastoma is the most common pediatric malignancy with heterogeneous clinical 

behaviors, ranging from spontaneous regression to aggressive progression. Many studies have identified 

potential aberrations related to the pathogenesis and prognosis, but predicting tumor progression in and 

clinical management of high-risk patients remains a big challenge. 

Method: We integrate gene-level expression, array-based comparative genomic hybridization and functional 

gene-interaction-network profile of 145 neuroblastoma patients to detect potential driver genes. The drivers 

are summarized within each patient into a score (DGscore), and we then validate its clinical relevance in terms 

of association with patient survival.   

Results: Focusing on the subset of 48 clinically defined high-risk patients, we identify 193 recurrent copy 

number aberrations (CNAs), resulting in 274 altered genes with copy number gain or loss which have 

corresponding impact on the gene expression. Using a network enrichment analysis, we detect four common 

driver genes, ERCC6, HECTD2, KIAA1279, EMX2, and 66 patient-specific driver genes. Patients with high 

DGscore, i.e. carrying more copy-number-altered genes with correspondingly up or down-regulated 

expression and functional implications, have worse survival than those with low DGscore (P = 0.006). 

Furthermore, Cox proportional-hazards regression analysis indicates that, adjusted for age, tumor stage or 

MYCN amplification, DGscore is the only significant prognostic factor for high-risk neuroblastoma patients (P 

= 0.008).  

Conclusions: Integration of genomic copy-number alteration, expression and functional interaction-network 

data reveals clinically relevant and prognostic putative driver genes in neuroblastoma. The identified putative 

drivers may give us new drug targets for individualized therapy.    

 

Introduction 
Neuroblastoma, an embryonal malignancy in sympathetic nervous system, is the most frequent extracranial 

solid tumor in children. It accounts for 7% of pediatric oncology and 15% of childhood cancer deaths. 

Neuroblastoma is highly heterogeneous with various clinical courses, ranging from spontaneous regression to 

aggressive and therapy-resistant progression despite intensive treatment [1-3]. Prognosis of neuroblastoma 

patients is associated with many factors, such as age at diagnosis, the International Neuroblastoma Risk Group 

(INRG) staging and oncogene MYCN amplification. Patients with stage 4 disease >18 months at diagnosis or 

patients of any age and stage with MYCN-amplified tumors are referred as high-risk patients [4]. Although 

several alterations including MYCN amplification, TERT rearrangements, ALK and ATRX mutations are 

identified to be associated with neuroblastoma, detection of potential drivers is still hampered by the low 
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mutation frequency and few recurrently mutated genes [5]. We hypothesize that additional structural 

alterations rather than point mutations might occur in high-risk neuroblastoma.  

In this study, we aim to identify potential drivers of neuroblastoma by integrating various molecular 

features, including RNA sequencing (RNA-Seq), array comparative genomic hybridization (aCGH) data for 

copy number alterations (CNAs) and functional gene-interaction network. The drivers are defined as recurrent 

genomic alterations in tumor patients with consistent gene expression and with an important role in the 

functional interaction network. Furthermore, to assess the clinical relevance of the detected potential driver 

genes, we validate them in terms of association with patient survival. We demonstrate that the integration of 

diverse omics and functional data can provide more biologically and clinically relevant insight in 

neuroblastoma research in terms of potential drug targets.  

 

Methods 
Patients and datasets 

The Neuroblastoma Data Integration Challenge of CAMDA 2017 provides expression profiles of 498 

neuroblastoma patients, of which 145 patients have both RNA-Seq and aCGH data. There are 89 male and 56 

female patients, and the age at initial pathological diagnosis ranged from 0 to 24.6 years old, with a median of 

1.2 years old. Forty-eight out of 145 patients are clinically defined as high-risk neuroblastoma and 97 as 

low-risk [4]. The MYCN gene is a common proto-oncogene in neuroblastoma and examined by clinical 

diagnostic FISH test. We categorize the patients into 23 with MYCN amplification and 122 without MYCN 

amplification, respectively. Staging by the International Neuroblastoma Staging System (INSS), there are 33 

patients at stage I, 20 at stage II, 20 at stage III, 47 at stage IV and 25 at stage IV-S. In order to optimize power, 

we shall focus our analysis to the 48 high-risk (HR) patients. 

Integrative statistical analysis 

Figure 1a presents an overview of the procedures to identify potential driver genes, including data 

pre-processing, copy number calling, integrative analysis and clinical validation.  

First, we use two computational algorithms, MPSS [6] and cnvpack [7], to identify CNAs within and 

commonly across patients, respectively. MPSS takes a robust smooth segmentation approach to identify 

whether a segment is a true CNA [6]. We then use cnvpack to detect recurrent CNA regions, which is defined 

as alterations occurred in at least 10% of all patients [7]. To investigate the impact of CNAs on gene 

expression, we annotate genes on CNAs and compare the gene expression pattern in samples with alterations 

compared to samples with normal copy number. We keep genes which exhibit significantly over-expression 

with amplifications compared to the non-altered samples, based on p-value (P) < 0.05 using one-sided 

Welch’s t-test, vice versa for genes with deletions. These genes are then chosen as potential drivers and 

referred as functional gene set (FGS, Fig. 1a). In parallel to the CNA analysis, we obtain gene expression data 

for 60,776 genes derived from RNA-Seq, which are measured in FPKM with corrections using 

Magic-AceView (MAV) pipeline [8]. The raw gene expression data are then centered and variance scaled 

within each patient. Since no paired normal tissues are available for the patients, we rank the expression level 

for extremity of each gene across the original 498 samples. For each patient, we then keep the top 200 highest 

ranked genes as patient-specific extremely expressed genes or the so-called patient-specific expression-altered 

gene sets as shown in our analysis pipeline (Altered Gene Set, AGS, Fig. 1a). The collection of recurrent 

patient-specific AGS is considered as common AGS. In addition to the expression profile-based AGS, 52 

neuroblastoma-related genes from literature [9] are also considered as AGS.  



   Next, to integrate the results of copy number alteration and gene expression data, we implement network 

enrichment analysis (NEA) as follows. The key idea for NEA is that the functional impact of each 

copy-number-altered gene can be assessed according to the number of differentially expressed neighbors in a 

gene interaction network. We use a comprehensive network containing 1.4 million functional interactions 

between 16,288 HUPO genes/proteins [10]. Each copy-number-altered gene in FGS is assessed for its central  

Figure 1. (a) Flowchart of the identification of potential driver genes and clinical validation. (b~e) 

Comparison of survival analysis for 48 high-risk patients split by different levels of omics integration. 

 

functional role in modulating the expression of its interacting neighbors in the network. The significance is 

accessed using a quantitative enrichment score (z-score), which measures the over-representations of direct 

links between the AGS and FGS. Genes which are functionally significant, with z-score>2, are kept as 



putative driver genes. We compute the total number of drivers with CNAs in each patient and term the number 

‘driver gene score’ (DGscore). Finally, we use the DGscore to compare the prognosis of patients with 

DGscore larger than the median versus those lower than the median.  

 

Results 
Driver genes in high-risk neuroblastoma 

Among 48 high-risk (HR) neuroblastoma patients, we identify 4,058 CNAs with an average 84 and range 

9~433. Next, we detect 193 recurrent CNAs occurred in at least 5 (10%) of the 48 subjects. The recurrent 

CNAs contain a total of 6,390 genes. After filtering we have a final set of 274 recurrently altered genes which 

are served as FGS in the network enrichment analysis. To identify patient-specific driver genes, we perform 

the NEA analysis within each sample, where the AGS is the top 200 patient-specific extremely expressed 

genes and FGS is the patient-specific genes among the 274 altered genes. We detect 66 unique patient-specific 

drivers, with a median number of 2.8 in each high-risk neuroblastoma patient. To identify common driver 

genes, FGS and AGS are built as the follow. We apply a more stringent criterion by excluding recurrent CNA 

regions containing both amplifications and deletions among patients to create FGS. The reduced FGS contains 

30 genes in which 10 genes exhibiting only amplifications and 20 genes with only deletions. Next, an AGS is 

derived from 52 candidate neuroblastoma genes from literature [9] and 111 common extremely expressed 

genes occurred in >4 patients. Finally, the NEA analysis finds four common potential driver genes ERCC6, 

HECTD2, KIAA1279 and EMX2.  

To examine the clinical relevance of the potential drivers, we divide 48 HR samples into high and low 

DGscore groups, where the high DGscore is defined as larger than the median value of the DGscore. Fig. 1b 

shows that neuroblastoma HR patients with a high DGscore have poor survival compared with low DGscore 

patients (Figure 1b, P = 0.006). However, if we simply summarize the 274 non-functionally characterized 

CNA genes, we would not be able to predict well the patients’ survival (Fig. 1c, P = 0.492). This indicates the 

importance to functionally characterize recurrent altered genes by NEA. Another advantage of DGscore is that 

by integrating information of common driver genes and patient-specific driver genes, it can capture both the 

recurrent and individualized signatures in tumors. Separately using either only patient-specific driver genes 

(Fig. 1d) or only common driver genes (Fig. 1e) for NEA cannot predict patient survival well (P > 0.2).                                             

  

Table 1. Cox proportional-hazard regression models of survival.  

Model Variable Hazard ratio P
*

Model 1a DGscore 2.69 0.008

Model 1b Tumor stage 1.41 0.52

Model 1c MYCN  amplification 1.18 0.65

Model 1d Age 1.00 0.058

Model 2 DGscore+tumor stage
a

    DGscore 2.69 0.008

    Tumor stage 1.41 0.52

Model 3 DGscore+MYCN
b

    DGscore 2.68 0.007

    MYCN  amplification 1.15 0.70

Model 4 DGscore+age

    DGscore 2.67 0.008

    Age 1.00 0.064   

 

a
Stage 4/4S are compared against Stage I-III 

b
No MYCN amplification is used as reference group  

*
P-values from the Wald test. 

 

 



For neuroblastoma, tumor stage, MYCN oncogene amplification and age are known prognostics factors, 

but not necessarily so for HR patients. We thus investigate whether the DGscore has a prognostic value 

independent of the previously known predictors. To do that, we include these factors in Cox regression 

analysis of HR patients. In Table 1, the first four models display the individual predictors in univariate 

regression, where DGscore is the only significant predictor (Model 1a, P=0.008). Note, in particular, that 

MYCN amplification is not significant (Model 1c, P=0.65). The last three models show that DGscore remains 

highly significant after adjusting for tumor stage, MYCN amplification or age (Models 2, 3 and 4). 

 

Discussion and Conclusion 
We have implemented an integrative omics analysis to identify potential driver genes in neuroblastoma 

and validate these drivers clinically in terms of survival prediction. The results show that high-risk 

neuroblastoma patients who carry more copy-number-altered genes with functional implications and extreme 

expression patterns have worse survival than those with less potential driver genes. The potential drivers, 

especially the patient-specific drivers, may provide potential drug targets for individualized precision 

medicine and new information in understanding the tumor biology.  

We also perform NEA analysis for the whole 145 neuroblastoma patients. No common driver genes are 

detected for the whole 145 samples, perhaps due to the diverse clinical outcome of neuroblastoma. 

Interestingly, our patient-specific analysis successfully identifies individualized drivers and clearly separates 

the patients into two distinct survival groups (results not shown). Some identified common driver genes in HR 

patients has been discovered to play important roles in neuronal differentiation in previous studies. For 

example, ERCC6-depleted neuroblastoma cells show defects in gene expression programs required for 

neuronal differential and fail to differentiate and extend neurites [11]. EMX2 is a prognostic and predictive 

biomarker in malignant pleural mesothelioma [12]. Nonsense mutations in KIAA1279 are also associated with 

malformation of the central and enteric nervous system [13]. Furthermore, the top two mostly recurrent 

drivers identified through the patient-specific approach, OTOP3 and MYCN, are considered as a driver event 

in 13 (27%) out of the 48 HR patients. Herein, MYCN is one of the best characterized genetic alterations in 

neuroblastoma; and copy number gain of chromosome 17q, where OTOP3 locates, is a known neuroblastoma 

risk factor.  

In our future work we would use the transcript-level expression data from RNA-Seq to refine the current 

driver signatures. In addition, patients whose expression profiles are available but not the aCGH data may be 

used to partially validate the discovered drives. One limitation of our current analysis is the small data size. 

We would need an independent dataset with both aCGH and expression data for further validation. 
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