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Abstract

One of the main current challenge in computational biology is to make the best of the
huge amount of experimental data that is being produced. For instance, large cohorts of
patients are often screened using different high-throughput technologies, effectively producing
multiple molecular profiles per patients for hundreds or thousands of patients. We propose
and implement a network-based method that integrates such patient omics data and use them
to predict various clinical features. Using a neuroblastoma dataset, we then demonstrate that
the networks inferred from omics data contain clinically relevant information and that patient
clinical outcomes can therefore be predicted using only network topological data.

Introduction
In the last decade, high-throughput technologies have been massively used to study various dis-
eases to decipher the underlying biological mechanisms and to propose novel therapeutic strategies.
Initiatives such as The Cancer Genome Atlas have produced and made publicly available a huge
amount of omics data from thousands of human samples. These data often correspond to measure-
ments of different biological entities (e.g., transcripts, proteins), represent different views on the
same entity (e.g., genetic, epigenetic), and are obtained through different technologies (e.g., mi-
croarray, RNA-sequencing). This diversity has motivated the use of integrative strategies that can
make sense of these complementary, and sometimes contradictory data. Such integrative strategies
have, for instance, been used to define distinct molecular classes of lower-grade gliomas, which
exhibit similar pathway perturbations [1].

Another popular research strategy is to represent the data as biological networks, where nodes
represent biologically relevant entities (typically genes or proteins) and edges represent relationships
between these entities (e.g., regulation, interaction). Network-based methods can then be used,
for instance, to define smaller modules within a larger network, or to understand how a biological
signal is processed by a network, or to identify key nodes with respect to a biological process
of interest. As an example, such network-based approaches have been used to build brain region
specific networks from patient expression profiles, and to prioritize genes and gene sets with respect
to Alzheimer’s disease traits [2]. It is also possible to obtain relevant predictive models by relying
on the network topological information, instead of the raw data. An example of such method is
Mashup, an approach that summarizes topological information from protein-protein networks to
predict functional annotations or genetic interactions, yielding comparable or often even better
performance than state of the art methods [3].

Although most biological networks represent gene or protein networks, it is often relevant
to represent the data as Patient Similarity Networks (PSN). In these networks, nodes represent
patients and edges represent similarities between the patients’ profiles. These networks can be used
to group patients and to associate these groups with distinct clinical features. It was observed for
instance that, within a network obtained by integrating multiple omics data, cancer patient clusters
had different clinical outcomes, including different overall survival [4]. Similarly, a network topology
based analysis of diabetes patient genotypes has revealed that patients can be clustered in three
groups, and that these groups have distinct clinical features, including different comorbidities [5].
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Figure 1: Overall workflow of the proposed strategy. First, the omics datasets are pre-processed
and transformed into Patient Similarity Networks. Next, centrality metrics are computed and used
to build classifiers (using clinical descriptors as classes to be predicted).

For the current study, we hypothesize that clinically relevant information is encoded within
PSN built from omics data. To investigate whether we can use this topological information to
predict patient clinical outcome, we analyze a neuroblastoma dataset that contains gene expression
data, genotype data, and clinical descriptors. Our approach is similar to a previous analysis in
which classifiers built from these gene expression data were used to predict clinical outcome [6].
However, our approach is still different since we transform the omics data into networks, and then
train the classifiers with network topological data, instead of training the classifiers directly with
omics data. Several classifiers are used to predict distinct clinical descriptors such as ‘Disease
progression’ and ‘Death from disease’. Our results indicate that the performance of classifiers
trained with topological data is at least comparable to the performance of the models built on the
omics data directly, and in some cases better. Altogether, our network-based approach represents
therefore a novel and complementary strategy to analyze and integrate large collection of omics
data.

Results and discussion
We propose a network-based method to analyze and integrate omics data that relies on the topolog-
ical properties of the networks derived from these data (see Figure 1). More precisely, the omics
data are first transformed into networks, then centrality metrics are computed for all network
nodes (i.e., representing the patients) and used as input for classification models (using clinical
features to define classes). To validate our strategy, we have defined different settings (see below)
and evaluated the classification performance using the Matthews Correlation Coefficients (MCC,
see Material and Methods).

We have compared the performance of the classification models when inputed with omics data
(hereinafter classical) or with network centrality values (hereinafter network-based), regardless of
the other parameters. Our results indicate that the performance of both strategies lies within the
same range. However, when looking at the shape of the distributions, we can observe that the
performance of network-based models is consistently higher than the performance of the classical
models. The strongest difference is observed for the ‘Death from disease’ clinical feature (median
MCC of 0.30 and 0.09 for network-based and classical models respectively). The same observation
can be made for the other clinical features ‘Disease progression’ and ‘Risk status’, although the
differences between the median MCC are smaller (see Figure 2A). As a control, we have performed
the same comparison for the ‘gender’ feature that is not correlated to the other clinical features
(maximum Pearson’s correlation coefficient is 0.04 with ‘Death from disease’). The results are
inversed (e.g., median MCC of 0.38 and -0.03 for classical and network-based models respectively
using a linear discriminant analysis), indicating that the network-based approach is less biased
by the gender of the patients (see Figure 2B). Conversely, the classical models are able to better
predict the gender of the patients because they rely on the full omics data, which include expression
data from loci that are located on the sex chromosomes.

We have then investigated whether the parameters of the network-based approach can influ-
ence its classification performance. We first compare the different dimension reduction strategies
and network inference methods (see Material and Methods). In both cases, we do not observe
significant variations in the classification performance, for any of the clinical endpoints, and any of
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Figure 2: Performance of the classification models in different settings. (A) Violin plots of the esti-
mated classification performance (MCC values) for the classical and network-based approaches, and
for the different clinical endpoints (including the patient gender). (B) Violin plots of the estimated
classification performance (MCC values) for the different algorithms and clinical endpoints.

the algorithms, indicating that our approach is stable to data transformation and normalization.
We have then performed a comparison of different centrality metrics. Once again, we observed
that the performance of the classification models remains similar for all clinical endpoints and
algorithms when different centrality metrics are used. Altogether, these results seem to indicate
that the different centrality metrics are essentially able to capture the same signal from the net-
works, regardless of the other parameters. However, it is important to notice that most centrality
metrics are positively correlated, and it was therefore expected that they would produce similar
classification results.

We have then computed the correlation between the MCC values of the different clinical end-
points (regardless of the other parameters). We observe that in general the correlation at the
performance level is rather high (Pearson’s correlation coefficients between 0.58 and 0.85), indicat-
ing that models that perform well for one clinical endpoint, are more likely to also perform well
for the other clinical endpoints. However, the correlation between the clinical features themselves
is in general lower (Pearson’s correlation coefficients between 0.48 and 0.67). This indicates that
the rather high correlation at the performance level cannot only be explained by the underlying
correlation at the feature level. However, it should be noted that the best models for each clinical
endpoint are different, indicating that no model is always superior to all other models. In partic-
ular, there is not a single classification algorithm that outperforms the other two on all clinical
endpoints (Figure 2B).

To conclude, we have designed a method that uses the topological information encoded within
patient similarity networks to predict clinical outcome. The results indicate that our network-based
method can be complementary to existing methods. We are currently extending the validation on
the neuroblastoma dataset by selecting the omics features that correlate with the clinical endpoints
of interest (similarly to a previous analysis of the same dataset [6]), and by making better use of
the available genomic data.
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Material and Methods

Data collection
The twelve datasets were collected on the 28th of February 2017 from GEO1 (eleven expression
datasets obtained from the series GSE49710, GSE49711 and GSE62564), and from the BOKU
website2 as specified in the CAMDA guidelines3 (single aCGH dataset). The clinical descriptors
have been extracted from the above mentioned datasets and uniformized manually to keep only
six clinical descriptors. Multi-class descriptors (e.g., ‘Stage’) have been split into multiple binary
descriptors for binary classification.

Data preparation
The eleven expression datasets contain pre-processed profiles for 498 samples, corresponding to
498 patients. For aCGH, we have extracted the 185 samples, corresponding to 145 patients for
which we also have expression data. Since the aCGH data were produced by different laboratories
and using different arrays, the data have first been filtered to keep only the genomic features that
are shared by all platforms, and further normalized by correcting for the potential lab, platform,
and batch effects. For all datasets, features with at least one missing point are dropped prior to
the network inference step. For each dataset, we then derive three data matrices by either keeping
all features (no dimension reduction) or by applying two different dimension reduction strategies:
(i) keeping only the 20% most varying features, (ii) keeping the PCA based pseudo-features that
explain more than 90% of the variance.

Network inference
Each data matrix is then used to infer two Patient Similarity Networks (PSN) by using two slightly
different inference methods. In both cases, the Pearson correlation coefficients between all patient
pairs are computed. Then, these correlation coefficients are rescaled to represent positive edge
weights using either (i) a simple rescaling strategy, or (ii) a Weighted Correlation Network Analysis
(WGCNA) based strategy that enforces scale-freeness of the associated network. Both approaches
are summarized by Equation 1).

wa,b =

(
ca,b −min(C)

max(C)−min(C)

)β
(1)

with wa,b the edge weight between the nodes representing the patients a and b, ca,b the correlation
between the molecular profiles of patients a and b, C the set of all correlations, and β the parameter
that controls the scale-freeness of the network. For a simple rescaling, we have set β to one.
Alternatively, and as recommended previously, for the WGCNA-based strategy, we have used the
smallest β that gives a truncated scale-free index of at least 90% (for our networks, β ∈ {2, 4, 6, 8}).

Centrality metrics
For each network, we then compute six centrality metrics: weighted degree, closeness centrality,
current flow closeness centrality, current flow betweenness centrality, eigen vector centrality, and
Katz centrality. All centrality metrics are then individually standardized to a zero mean and a unit
standard deviation. These values are then considered as features that can be used for classification.

Classification algorithms
Class definitions have been extracted from the clinical descriptors provided with the omics data.
Several classification algorithms have been considered, including Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), and Support Vector Machine (SVM), using ded-
icated R and Python libraries. In addition, we have considered several classification scenarios by
varying the number of data sources, networks and centrality metrics used (see Table 1). As a
control, we have also built classifiers using the original omics data (without any network infer-
ence). For convenience, we have used the same train and test stratified split than a previous study
of the same data [6]. The performance of the classifiers on the test data is estimated using the

1https://www.ncbi.nlm.nih.gov/geo/
2http://ala.boku.ac.at/camda2017/NB/
3http://camda2017.bioinf.jku.at/doku.php/contest_dataset
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Data sources

Microarray
RNA-seq (genes, MAV)
RNA-seq (transcripts, MAV)
RNA-seq (junctions, MAV)
RNA-seq (genes, TAV)
RNA-seq (transcripts, TAV)
RNA-seq (junctions, TAV)
RNA-seq (genes, TUC)
RNA-seq (transcripts, TUC)
RNA-seq (junctions, TUC)
RNA-seq (transcripts, TUC-RE)

Network inference

Simple rescaling
WGCNA

Dimension reduction

None
Variance-based
PCA-based

Centralities

Weighted degree
Closeness
Current flow closeness
Current flow betweenness
Eigen vector
Katz

Table 1: Lists of the possible values for the four parameters of the network-based method. There are
11 data sources covering two technologies, distinct biological entities (genes, transcripts, junctions),
and several mapping strategies (MAV, TAV, TUC, TUC-RE, see [6] for details). In addition, we
have defined 2 network inference methods, 3 dimension reduction policies, and 6 centrality metrics.
In total, there are therefore 396 features available for classification.

classification accuracy and the Matthews Correlation Coefficient (MCC), similarly to a previous
analysis of these data [6].
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