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ABSTRACT 

Background: Many methods have been developed for metagenomic sequence classification, 

and most of them depend heavily on the known organisms. In addition, a large portion of 

reads may be classified as unknown, which greatly impairs our understanding of the whole 

sample.  

Result: Here we present MetaBinG2, a fast method to do metagenomics sequence 

classification and consequent abundance analysis on complex environments with a large 

number of unknown organisms. MetaBinG2 is based on sequence composition, and uses 

GPUs to accelerate its speed. A million 100bp Illumina sequences can be classified within two 

minutes. We applied MetaBinG2 to MetaSUB Inter-City Challenge and identified microbial 

community structures for different cities. 

Conclusion: Compared to existing methods, MetaBinG2 is fast, highly accurate, especially 

for those samples with a significant percentage of unknown organisms. 

 

INTRODUCTION 

The amount of metagenome sequencing data can be huge. Many methods are developed to 

do the taxonomy classification of metagenome sequencing data. Existing methods can be 

divided into two categories. One is alignment-based, such as PAUDA (1), MAGAN (2), 

PhymmBL (3). These methods are often very accurate but slow. Another category of methods 

are composition-based, such as NBC (4) and metaCV (5). This type of methods are faster 

than the former but with lower accuracy. Existing methods based on k-string search like 

Kraken (6) and CLARK (7), have excellent performance both in speed and precision but they 

are heavily dependent on the known species. Their performance faded for samples from an 

environment with a large number of unknown organisms. 

Here we present MetaBinG2, a tool to classify metagenome sequencing data for samples 

from an environment with a large number of unknown organisms. The previous version of 

MetaBinG (8) has shown excellent speed performance on metagenomics sequence 

classification, which is almost 1500-fold faster than Phymm (9). In MetaBinG2, we added a 

new assumption that a sequence is more likely from an organism if its abundance is higher 

than the others when the distances between this sequence and several organisms are similar. 

The accuracy of MetaBinG2 is close to 80% at phylum level for sequencing data with length 

about 100bps.  



In order to evaluate its classification potential for unknown organisms, we used clade 

exclusion method, which is an effective way to measure the capability to identify source 

genome when the number of unknown organisms in the samples is large (10). 

 

MATERIALS AND METHODS 

A set of simulated dataset SimDataset was created to test the performances of MetaBinG2 

and existing methods, such as CLARK, metaCV, and MetaBinG. In addition, a mock dataset, 

a real world dataset and MetaSUB Inter-City metagenomic dataset were collected to test 

MetaBinG2. 

SimDataset 

This dataset was derived from MG-RAST repository - MetaSimHC_100 (10). Metagenome 

sequencing data were created with NeSSM (11) based on the community structure, and 

sequencing read length was set to 100bp and 250bp. 

Mock dataset 

This dataset was selected from HMMC. Its NCBI accession id is SRR072232. 22 species 

were mixed with different percentages. 

Real world data 

This dataset was sequenced from cow rumen (12) with read length of 125bps. The accession 

id of the data in NCBI is PRJNA60251. 

MetaSUB Inter-City metagenomic data 

We downloaded the metagenomic data from CAMDA contest Challenge 1 – MetaSUB urban 

microbiome diversity challenges. The sizes of raw data in fastq format from Boston, 

Sacramento and New York were 220Gbps, 247Gbps, and 341Gbps respectively.   

Evaluation 

TP represents sequences whose predicted taxonomies are same with their true taxonomies. 

FP means sequences whose predicted taxonomies are different from their true taxonomies. 

For MetaBinG and MetaBinG2, the accuracy was calculated as the number of TP/total 

number of sequences. For a fair comparison, we calculated sensitivity=TP/(TP+FN), 

precision=TP/(TP+FP), and adjusted accuracy=(sensitivity+precision)/2 for, CLARK and 

metaCV. 

MetaBinG2 

(1) Building database 

MetaBinG2 converts a complete genome sequence into a state-transitions vector under the 

kth-order markov model. A state in this Markov model is defined as a sequence with the 

length of k, and each state can transfer to four kinds of stats, so that there are 4k+1  kinds of 

transition probabilities. The transition probabilities from the state m to the state n of the 

genome i is calculated as following: 



kMMi,mn = Pi(Om|On)

=
Fi(Om|On)

Fi(Om)
                                                        (1) 

where Om and On are oligonucleotides of length k, Fi(Om|On) means the count of events 

that state Om transfers  to On, and  Pi(Om|On) represents the transition probability from the 

Om to the On of the genome i. 

(2) Calculate the distance between short sequences and genomes. 

We designed MetaBinG2 with a reasonable assumption that a sequence is more likely from 

an organism which take a larger percentage when the distance between this sequence and 

several organisms are similar. Those most reliably classified results' distribution is used as a 

priori knowledge in subsequent analyzes. The similarity between a short sequence with length 

l and a genome i can be reflected by Si as following: 

Si = (− ∑ ln (pi(Oj|Oj+1))

l−k−1

j=0

)

∗ (1

+ αωi)                                                   (2) 

where Ojand Oj+1 are oligonucleotides of length k, pi(Oj|Oj+1) represents the transition 

probability from the Oj to the Oj+1 of the genome i, ωi stands for the weight of genome i 

which is calculated as the number of sequences assigned to genome i  divided by the total 

number of sequences, and  is a training value to control the force of weight ωi. For each 

sequence, a genome in the database with the minimum score is selected as the source 

genome. 

The vectors for short sequences and genomes are used to calculate the scores between each 

sequence and each genome through matrix multiplication, which is achieved by cublas in 

GPU. The score update with the weight and the search of the best score is also running on 

GPU, while the annotation of the best score is running on CPU (Figure 1). 

 



Figure 1. The system diagram of MetaBinG2.  

First, MetaBinG2 load the database; Second, the short sequences in fastafast format are also 

transferred into state-transitions matrix; Then, these two matrix are upload to GPU memory 

and do matrix multiplication to get the score matrix by cublas function; The score matrix is 

adjusted with weights, and the source genomes with minimum scores will be selected; Next, 

the weights are updated according to the percentage of each selected genome back on CPU; 

when the BC distance between the current genomes percentages and the last genomes 

percentages is less than the cutoff, the final scores will be annotated with their taxonomy 

information on CPU and output. 

 

RESULTS 

Clade exclusion experiment 

MetaBinG2 was compared with CLARK, metaCV and MetaBinG by clade exclusion on 

SimDataset. Accuracy of MetaBinG2 were more stable with unknown and were better as the 

length of sequences increase (Figure 2a 2b). These 4 tools were running on the same node 

with 24 cores and with the parameters make use of CPU and GPU as efficiently as possible. 

(Figure 2c). Running time of MetaBinG2 is comparable with these methods holding advantage 

on speed and even better. 

Comparison predicted abundance 

The species percentage are clear for SimDataset and mock dataset. We calculate the cosine 

values between predicted abundance of the 4 methods on these two datasets (Figure 2d 2e) 

and the true abundance to evaluate a method 's capability providing outline of a sample's 

community structure. The predicted community structure of MetaBinG2 is more similar to the 

true abundance than the others. 

 

 

Figure 2. Performance comparison of CLARK, MetaCV, MetaBinG and MetaBinG2.  



(a) (b) Comparison of accuracy at phylum level on SimDataset with different levels ofclade 

exclusion with read length 100bp (a) and 250bp (b).The accuracy of each software is tending 

to decrease as the level of clade exclusion moves from no_exclude to class. (c) Comparison 

of time cost for the 4 methods, including the database loading time and the time for 

classification.(d)(e) Comparison the cosine value between predicted abundance and the true 

abundance on SimDataset (d) and mock dataset (e). 

 

Performance of MetaBinG2 

Researchers (12) assembled 15 genome bins from the cow rumen metagenomic sequences 

and assigned them into 4 phylogenetic orders - Bacteroidales, Clostridiales, Myxococcales, 

and Spiochaetales. In the result of MetaBinG2, the first four phyla and four classes with 

highest percentage are the same with the assembled result. On the order level, 

Bacteroidales, Clostridiales, and Spiochaetales also have relatively high percentage. For 

these real-life dataset with plenty of unknown species, MetaBinG2's performance is satisfying. 

We also applied MetaBinG2 on MetaSUB metagenomic data and identified city specific 

organism abundances for different cities (Figure 3). 

 

Figure 3. Community structure on phylum of three cities. 

 

DISCUSSION 

MetaBinG2 require much smaller storage space - 72M compared with 24G for CLARK and 

50G for metaCV when database is built from 2606 genomes. It has more potential to use 

more additional genomes as training set than the others. 

The development of third generation sequencing technology represented by PacBio is good 

for MetaBinG2 due to the increase of reads length is benefit for its classification accuracy. 

MetaBinG2’s scope of application is large. For example, the contamination analysis. Like 

specific organism abundances of different cities can be identified by MetaBinG2 conveniently, 

the community structure of any corner in laboratory can be identified with MetaBinG2 too. The 

contamination analysis is very useful for experiment repeatability. Furthermore, MetaBinG2 

may be helpful to shorten the cycle of pathogenic bacteria identification which is fatal in 

hospital to avoid the worse tendency. 

  

AVAILABILITY 

MetaBinG2kit is an open source collaborative initiative available in the GitHub repository 

(https://github.com/mengmayang/MetaBinG2kit) 
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