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1 Introduction
Life sciences have been highly transformed by the emergence of the so-called “big data” era,
synonimous of the large and multi-omics data sets now available. The increasing availability of
such data provides a real challenge: integrate them to improve our understanding of biological
concepts. As an example, the The Cancer Genome Atlas (TCGA) project aims at improving our
ability to diagnose, treat and prevent cancer by analysing large numbers of human tumors, using
gene expression, copy number, microRNA and DNA methylation data [1, 2]. In this contribution,
the main goal consists of taking advantage of these multi-omics data to identify cancer driver genes
(e.g. oncogenes) and to understand their roles within the genome. Previous work has focused on
incorporating copy number data to filter potential regulators in a Bayesian module network analysis
[3] whereas others have added mutation data for studying driver genes [4].

We recently developed AMARETTO, an algorithm that integrates copy number, DNA methy-
lation and gene expression data to identify a set of driver genes by analysing both cancer and
normal samples, and constructs a module network to connect them to clusters of co-expressed
genes [5] and applied AMARETTO on several single cancer sites. Here, we propose a pancancer
AMARETTO analysis. To accomplish this, we cluster the modules of co-expressed genes in com-
munities according to their similarities to identify pancancer driver genes. This will allow the
identification of master regulators across all cancers associated with common pathways across
different types of tumors, and eventually may lead to the identification of pancancer drug targets.

2 Materials and methods
2.1 Data preprocessing

We used gene expression, copy number and DNA methylation data from TCGA for 11 cancer sites,
namely bladder cancer (BLCA), breast cancer (BRCA), colon and rectal cancer (COADREAD),
glioblastoma (GBM), head and neck squamous carcinoma (HNSC), clear cell renal carcinoma
(KIRC), acute myeloid leukemia (LAML), lung adeno carcinoma (LUAD), lung squamous carci-
noma (LUSC), serous ovarian cancer (OV) and endometrial carcinoma (UCEC) (for more details
on these data sets, see Table 1). All data sets are available at the ICGC [6] and TCGA data
portals [7].

The gene expression data were produced using Agilent microarrays for GBM and ovarian cancer,
and RNA sequencing for all other cancer sites. Preprocessing was then done by log-transformation
and quantile normalization of the arrays. The DNA methylation data were generated using the
Illumina Infinium Human Methylation 27 Bead Chip. DNA methylation was quantified using β-
values ranging from 0 to 1 according to the DNA methylation levels. We removed CpG sites with
more than 10% of missing values in all samples. We used the 15-K nearest neighbour algorithm to
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TCGA Cancer Site Copy number data DNA methylation data Gene expression data
Samples Genes Samples Genes Samples Genes

BLCA 178 1,974 123 472 181 15,432
BRCA 968 1,523 887 890 985 16,020

COADREAD 578 2,523 570 522 589 15,533
GBM 481 1,561 321 395 501 17,811
HNSC 365 2,184 308 753 371 15,828
KIRC 501 3,052 497 567 509 16,123
LAML 166 1,681 170 613 173 14,296
LUAD 487 3,585 367 678 489 16,092
LUSC 487 2,592 355 679 490 16,219

OV 528 1,499 540 510 541 17,814
UCEC 500 2074 496 821 508 15,706

Table 1: Overview of the number of samples and genes for each cancer site.

estimate the remaining missing values in the data set [8]. Finally, the copy number data we used
are produced by the Agilent Sure Print G3 Human CGH Microarray Kit 1M×1M platform. This
platform has high redundancy at the gene level, but we observed high correlation between probes
matching the same gene. Therefore, probes matching the same gene were merged by taking the
average. For all data sources, gene annotation was translated to official gene symbols based on the
HUGO Gene Nomenclature Committee (version August 2012). Due to the size of TCGA data,
the TCGA samples are analysed in batches and a significant batch effect was observed based on a
one-way analysis of variance in most data modes. We applied Combat to adjust for these effects
[9].

2.2 AMARETTO: multi-omics data fusion

Our approach for analysing TCGA cancer data is based on AMARETTO, a novel algorithm
devoted to construct a module network of co-expressed genes through the integration of multi-
omics data [5]. More precisely, AMARETTO is a two-step algorithm that (i) identifies a set of
potential cancer driver genes by integrating copy number, DNA methylation and gene expression
data, (ii) connects these cancer driver genes to their regulated modules of co-expressed genes using
a penalized regulatory program. We describe in details these two steps below:

• Step 1: To establish a list of cancer driver genes, we investigate the linear effects of copy num-
ber and DNA methylation on gene expression through a linear regression model performed
on each gene independently. Then we integrate DNA copy number and DNA methylation
data to reduce the list of candidates. This will restrict the cancer driver genes to genes with
either copy number or DNA methylation alterations. These alterations are detected using
the GISTIC [10, 11] and MethylMix [12] algorithms for copy number and DNA methylation
data respectively.

• Step 2: Given the cancer driver genes identified in Step 1, Step 2 aims at connecting them
to their regulated targets to construct the module network. First, the filtered data are
clustered in modules of co-expressed genes using a k-means algorithm with 100 clusters.
Then, we regress independently all cancer driver gene expression values using as regressors
every module’s mean expression, i.e. each module is written as a linear combination of cancer
driver genes. In order to induce sparsity, we choose to focus on the elastic net regularization
[13]. The module network is finally constructed by running iteratively the two following steps:
(i) reassigning genes based on closed match to new regulatory programs, (ii) performing the
regulatory program, until less than 1% of the cancer driver genes are assigned to new modules.
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2.3 Pancancer module communities

The pancancer analysis we perform is based on a careful comparison between the module net-
works constructed using AMARETTO for all considered tumor types. More precisely, we evaluate
whether there is a significant association between all pairs of modules through a hyper-geometric
test. We correct for multiple hypothesis testing using the false discovery rate [14]. We consider the
association to be major if both of the following conditions are satisfied: (i) the adjusted p-value
is < 0.05 and (ii) the overlap between two modules is larger than 5 genes. This defines a mod-
ule network according to a score, measured through the minus log-transformation of the adjusted
p-value. We used the open-source platform Cytoscape to visualize this network [15].

We finally cluster the module network in communities of modules using the clustering algorithm
OH-PIN [16], implemented in Cytoscape. This algorithm has already proven to be powerful for
identifying both overlapping and hierarchical modules in Protein-Protein Interaction Networks
(PPI networks). To run it, we need to define an overlapping maximal score that limits the overlap
between two communities (usually set to 0.5 [17]) and a threshold that controls the size of the
communities (set to 2).

2.4 Gene set enrichment analysis

To assign biological meaning to these communities of modules, we perform gene set enrichment
analysis based on the databases GeneSetDB [18] and MSigDB [19]. For the latter, we restrict the
enrichment to hallmark (H), curated (C2), GO (C5), oncogenic (C6) and immunologic signatures
(C7) gene sets, which are best suited for our study. The enrichment is evaluated by performing
multiple hyper-geometric tests, corrected using the false discovery rate (FDR) [14].

3 Results
Running AMARETTO on the 11 cancer sites and performing pancancer analysis as described
leads to a module network with 1673 edges between 592 nodes (Figure 1). Given this network, the
clustering algorithm OH-PIN then identified 28 communities containing between 3 to 81 modules
each. An example of such a community is highlighted in red in Figure 1.

Analysing more precisely the community represented in Figure 1, we found 35 regulators from
6 modules and representing 5 different cancer sites, namely BLCA, HNSC, LUAD, LUSC (two
modules) and UCEC. The top two genes in this community are GPX2 and NQO1, with GPX2
present as a regulator in all modules and NQO1 in half of the modules. GPX2 is expressed at crypt
bases of the intestinal epithelium and in tumour tissues. It also has been shown to be involved
in cell proliferation [20]. NQO1 has been shown to be involved in the regulation of inflammatory
mediators associated with prostate tumorigenesis [21].

Next, we used gene set enrichment analysis to investigate which pathways are enriched in this
community. We found that chronic inflammation pathways were highly enriched in this community
of modules. This included the NFE2L2 transcription factor [22]. This gene has proven to be critical
in the lung’s defense mechanism against oxydants, providing more precisely protection against
chemical carcinogenesis, chronic inflammation or asthma [23]. In addition, a gene expression
signature related to the response to cigaretto smoking is enriched in this community [24] and is
also relevant for the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD), a risk factor
for lung cancer.

4 Discussion
We have presented a multi-omics data fusion framework that combines gene expression, DNA
methylation and DNA copy number data across 11 cancer sites. Our goals are to find common
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Figure 1: Visualization of the module network. The nodes of the graph are the modules of all
cancers (represented using different colors according to the cancer type). An edge between two
modules stands for a significant association between them. One of the community detected through
OH-PIN is represented in red.

regulators across different types of tumors independent of anatomical location based on our hy-
pothesis that tumors are more similar when considering their molecular makeup compared to their
clinical profile. Our results show that pancancer communities of modules exist with common can-
cer driver genes. We highlight one community that is linked with chronic inflammation across
carcinoma with a squamous nature including bladder cancer (BLCA), head and neck carcinoma
(HNSC), lung cancers (LUAD and LUSC) and also including endometrial cancer (UCEC). More
specifically, we identified two genes, GPX2 and NQO1, as pancancer regulators of chronic inflam-
mation in these tumors.
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